Patents Assigned to The Johns Hopkins University
  • Patent number: 11691090
    Abstract: A distillation column including a plurality of alternating plates and spacers stacked in a z-direction is provided. The plates include a respective liquid channeling network on a top surface thereof, a respective vapor opening, and a respective descending ramp. The respective descending ramps abut a respective liquid feed location of the plate immediately below to form a continuous liquid channeling network. The respective vapor openings of adjacent plates are located on opposite sides of the distillation column and form a continuous S-shaped vapor channel defined by the plurality of alternating plates and spacers, and the respective vapor openings. Systems including such distillation columns and processes of distilling a fluid mixture are also provided.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: July 4, 2023
    Assignee: The Johns Hopkins University
    Inventors: Phillip I. Johnson, Jonathan P. Jones
  • Patent number: 11692028
    Abstract: The instant disclosure provides methods and compositions for the diagnosis, treatment and prevention of Marfan syndrome and related diseases, disorders and conditions. The disclosure further provides pharmaceutical compositions and kits for the diagnosis, treatment and prevention of Marfan syndrome and related diseases, disorders and conditions.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 4, 2023
    Assignee: The Johns Hopkins University
    Inventors: Harry C. Dietz, Jefferson J. Doyle, Alexander J. Doyle
  • Publication number: 20230201833
    Abstract: Provided herein are magnetofluidic cartridges of use in a wide variety of sample analysis applications, including nucleic acid amplification assays. The magnetofluidic cartridges include sample inlet wells and sample analysis wells. Temperature sensitive materials are used to separate the sample inlet wells and sample analysis wells from one another prior to performing a given sample analysis application. Related magnetofluidic devices, kits, and methods are also provided.
    Type: Application
    Filed: May 27, 2021
    Publication date: June 29, 2023
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Tza-Huei Jeff WANG, Alexander Y. TRICK, Fan-En CHEN
  • Patent number: 11684661
    Abstract: Provided herein are polypeptides comprising up to 9 antigenic elements of ETEC virulence determinants: 7 CFA adhesins [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, and 2 toxins expressed by all ETEC strains, were genetically fused together for CFA-toxoid fusion with proteins (CFA/I/II/IV-STatoxoid-LTtoxoid). Methods for making these polypeptides and their use in the treatment of ETEC related disease are also provided.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: June 27, 2023
    Assignees: The Johns Hopkins University, South Dakota State University
    Inventors: David A. Sack, Weiping Zhang
  • Patent number: 11684700
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: June 27, 2023
    Assignee: The Johns Hopkins University
    Inventors: Xuesong Jiang, Sashank Reddy, Gerald Brandacher, Hai-Quan Mao, Justin Sacks, Xiaowei Li, Kevin Feng, Russell Martin, Georgia C. Yalanis, Ji Suk Choi
  • Publication number: 20230190796
    Abstract: Provided are cells, such as engineered cells, that express a prostate-specific membrane antigen (PSMA) or a modified form thereof. In some embodiments, the cell further contains a genetically engineered recombinant receptor, such as a chimeric antigen receptor, that specifically binds to an antigen. The present disclosure also provides methods of detecting, identifying, selecting or targeting cells expressing PSMA, such as in connection with administration of such cells to subjects, including methods of adoptive cell therapy, or in connection with methods of manufacturing engineered cells.
    Type: Application
    Filed: April 7, 2018
    Publication date: June 22, 2023
    Applicants: Juno Therapeutics, Inc., The Johns Hopkins University
    Inventors: David Jeffrey HUSS, Hyam I. LEVITSKY, Il MINN, Martin G. POMPER
  • Publication number: 20230197935
    Abstract: An electrode includes an electrically conductive porous graphene core; a silicon layer disposed on an internal surface of the porous graphene core; and an ion-conductive hybrid silicate layer disposed on the silicon layer.
    Type: Application
    Filed: March 16, 2021
    Publication date: June 22, 2023
    Applicant: The Johns Hopkins University
    Inventor: Mingwei Chen
  • Patent number: 11680297
    Abstract: The present inventors have identified specific oncogenic pathways preferentially activated in BRAF-mutated-melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy. In one embodiment, a method comprises (a) testing a sample oiBRAF-mutated melanoma cells isolated from a patient and measuring the expression levels of genes expressed in the following oncogenic pathways: TNFa, EGFR, IFNa, hypoxia, IFNy, STAT3 and Myc; (b) calculating a 7-pathway activation pattern based on the measured expression levels of step (a); and (c) identifying the patient's resistance level to BRAF/MEK inhibitor treatment based on comparison of the calculated 7-pathway activation pattern to a reference.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: June 20, 2023
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Michael Mingzhao Xing, Dingxie Liu
  • Patent number: 11682760
    Abstract: Processes for preparing a niobate material include the following steps: (i) providing a niobium-containing source; (ii) providing a transitional metal source (TMS), a post-transitional metal source (PTMS), or both; (iii) dissolving (a) the niobium-containing source, and (b) the TMS, the PTMS, or both in an aqueous medium to form an intermediate solution; (iv) forming an intermediate paste by admixing an inert support material with the intermediate solution; (v) optionally coating the intermediate paste on a support substrate; and (vi) removing the inert support material by subjecting the intermediate paste to a calcination process and providing a transition-metal-niobate (TMN) and/or a post-transition-metal-niobate (PTMN). Anodes including a TMN and/or PTMN are also provided.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: June 20, 2023
    Assignee: The Johns Hopkins University
    Inventors: Konstantinos Gerasopoulos, Dajie Zhang, Matthew W. Logan
  • Publication number: 20230181209
    Abstract: A cartilage dicing device according to an embodiment of the present invention includes blades disposed in a housing configured to mitigate entry of the cartilage into the housing of the device. The device includes a number of circular blades used to dice the cartilage in a uniform fashion. The blades are disposed in a housing with a base that prevents the tissue from entering the body of the housing, which ensures that more of the tissue is available to be diced and used in a medical procedure. The blades are spaced at uniform distance.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 15, 2023
    Applicant: The Johns Hopkins University
    Inventors: Patrick J. BYRNE, Brooke STEPHANIAN, Sabin KARKI, Paarth SHARMA, Kirby Tso LEO, Marc Anthony DI MEO, Mitsuki OTA, Millan PATEL, Thomas BENASSI, Nicholas James DURR, Allison ROSEN
  • Patent number: 11674959
    Abstract: The present invention in various aspects and embodiments involves pharmaceutical compositions prepared by contacting a candidate ?- or ?-integrin-binding molecule, or panel thereof, with an integrin heterodimer, and quantifying heterodimer disruption by the candidate molecule. An integrin-binding molecule, or derivative thereof, that disrupts the integrin heterodimer is selected and is formulated into a pharmaceutical composition for administration to a subject, e.g., who has a disease or disorder related to abnormal vascularization.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: June 13, 2023
    Assignees: The Johns Hopkins University, AsclepiX Therapeutics, Inc.
    Inventors: Niranjan Pandey, Aleksander S. Popel, Jordan J. Green, Adam Mirando
  • Patent number: 11672626
    Abstract: A marker for identifying a portion of a surgical margin includes a first element to attach the marker to the surgical margin of a surgical cavity located in a body of a patient, and a second element attached to the first element. The second element includes an indicator to uniquely identify the portion of the surgical margin through a radiological scan.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: June 13, 2023
    Assignee: The Johns Hopkins University
    Inventors: Mehran Habibi, Farhad Shir
  • Publication number: 20230172427
    Abstract: Provided herein are methods of detecting a pathology in an ear of a subject that include matching properties of captured images and/or videos with properties of an ear pathology model that is trained on a plurality of reference images and/or videos of ears of reference subjects, which properties of the ear pathology model are indicative of the pathology. Related kits, devices, systems, and computer program products are also provided.
    Type: Application
    Filed: April 5, 2021
    Publication date: June 8, 2023
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: James Henri CLARK, Therese L. CANARES, Mathias UNBERATH, John Robertson RZASA
  • Patent number: 11669984
    Abstract: A method, computer system, and a computer-readable medium for registering one or more structures to a desired orientation for planning and guidance for surgery is provided. The method includes in a preoperative stage, obtaining one or more 3D models of one or more structures from one or more CT images using an image processing segmentation technique or a manual segmentation technique; in the preoperative stage, registering the one or more structures to a template that is adapted to an alternating registration for a patient-specific shape and pose for a desired reduction and corresponding reduction transformations; in an intraoperative stage, mapping the one or more structures to one or more radiographs via a 3D-2D registration that iteratively optimizes a similarity metric between acquired and simulated radiographs; and in the intraoperative stage, providing an output that is representative of a radiograph or a 3D tomographic representation to provide guidance to a user.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: June 6, 2023
    Assignees: THE JOHNS HOPKINS UNIVERSITY, SIEMENS HEALTHCARE GMBH
    Inventors: Jeffrey H. Siewerdsen, Runze Han, Gerhard Kleinszig, Sebastian Vogt
  • Patent number: 11667976
    Abstract: TERT promoter mutations occur in both papillary and flat lesion bladder cancers, are the most frequent genetic alterations identified to date in noninvasive precursor lesions of the bladder, are detectable in urine, and appear to be strongly associated with bladder cancer recurrence. The TERT promoter mutations are useful urinary biomarker for both the early detection and monitoring of bladder neoplasia.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: June 6, 2023
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Luis Diaz, Nickolas Papadopoulos, George J. Netto, Ralph Hruban, Isaac A. Kinde
  • Patent number: 11660332
    Abstract: The present invention relates to compositions and methods for inducing an adaptive immune response against Hepatitis C virus (HCV) in a subject. In some embodiments, the present invention provides a composition comprising a nucleoside-modified nucleic acid molecule encoding a HCV antigen, adjuvant, or a combination thereof. For example, in some embodiments, the composition comprises a vaccine comprising a nucleoside-modified nucleic acid molecule encoding a HCV antigen, adjuvant, or a combination thereof.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 30, 2023
    Assignees: The Trustees of the University of Pennsylvania, The Johns Hopkins University, Vanderbilt Univeisily
    Inventors: Drew Weissman, George M. Shaw, Justin R. Bailey, Stuart C. Ray, James Crowe, Jr., Andrew Flyak
  • Patent number: 11660317
    Abstract: The present application relates to methods and compositions for treating diseased or damaged cardiac tissue comprising regenerative cells harvested from donor cardiac tissue. In one embodiment, regenerative cells are harvested from an allogeneic source and after administration result in increased viability and/or functional improvement of damaged or diseased cardiac tissue.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: May 30, 2023
    Assignee: The Johns Hopkins University
    Inventor: Eduardo Marban
  • Patent number: 11660349
    Abstract: Non-linear multiblock copolymer-drug conjugates for the treatment and prevention of diseases and disorders of the eye are provided. The polymer-drug conjugates can form nanoparticles, microparticles, and implants that are capable of effectively delivering therapeutic levels of one or more active agents for an extended period of time. Administration to the eye of an active agent in the form of a non-linear multiblock copolymer-drug conjugate produces decreased side effects when compared to administration of the active agent alone. Also provided are methods of treating intraocular neovascular diseases, such as wet age-related macular degeneration as well as diseases and disorders of the eye associated with inflammation, such as uveitis.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: May 30, 2023
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jie Fu, Peter A. Campochiaro, Justin Scot Hanes
  • Patent number: 11661589
    Abstract: Provided are modified microorganisms which are modified such that their growth can be controlled using exogenously provided compounds. The microorganisms can be modified by genetic alterations that include a promoter inducible by a first exogenously supplied compound. The promoter can be configured to drive expression of an RNA coding sequence that may be essential to growth of the microorganism. The microorganisms may also be modified to include site specific recombinase recognition sites flanking or within the RNA coding sequence so that expression of the corresponding site specific recombinase will disrupt transcription of the RNA. The site specific recombinase can be configured such that it expression and/or activity is suppressed by a second exogenously supplied compound. Methods of making the modified microorganisms and kits that contain reagents for making and using the modified microorganisms are also provided.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 30, 2023
    Assignees: New York University, The Johns Hopkins University
    Inventors: Jef D. Boeke, Neta Agmon, Yizhi Cai
  • Patent number: 11661402
    Abstract: Compositions and methods for visualizing tissue under illumination with near-infrared radiation, including compounds comprising near-infrared, closed chain, sulfo-cyanine dyes and prostate specific membrane antigen ligands are disclosed.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: May 30, 2023
    Assignee: The Johns Hopkins University
    Inventors: Martin G. Pomper, Ronnie C. Mease, Ying Chen, Sangeeta Ray