Patents Assigned to The Kansai Electric Power Co., Inc.
  • Publication number: 20130022474
    Abstract: An axial flow compressor includes: a rotor having a rotor vane; a first pressing member joined to one end surface of the rotor; a second pressing member joined to the other end surface of the rotor; a rotor shaft portion penetrating the first pressing member, the rotor and the second pressing member; and a nut which fixes the first pressing member and the second pressing member on the rotor shaft portion with the first pressing member and the second pressing member holding the rotor between. The rotor shaft portion is made of a material having a lower linear expansion coefficient than that of a material making at least a part of the rotor. The material making at least a part of the rotor may be aluminum or aluminum alloy.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 24, 2013
    Applicants: Tokyo Electric Power Company, Incorporated, Chubu Electric Power Company, Incorporated, JOHNSON CONTROLS DENMARK APS, KABUSHIKI KAISHA KOBE SEIKO SHO, DANISH TECHNOLOGICAL INSTITUTE, THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Yoshihiro Nakayama, Yoshitaka Baba, Satoshi Ide, Koichiro Iizuka, Ryo Fujisawa, Masatake Toshima, Kunihiko Suto, Kazutaka Kurashige, Ichirou Sakuraba, Daisuke Hayashi, Keiji Sugano, Svend Rasmussen, Ziad Al-Janabi, Finn Jensen, Lars Bay Moller, Hans Madsboll, Christian Svarregaard-Jensen, Klaus Damgaard Kristensen
  • Publication number: 20130014537
    Abstract: The refrigerator includes: a cooling-water line having a cooling-water pump to thereby send water for cooling a refrigerant inside of a condenser; a lubricating-water supply line connecting the part downstream from the cooling-water pump on the cooling-water line and a compressor 4 and supplying water flowing through the cooling-water line as a lubricant to the compressor 4; and a backup portion supplying water to the lubricating-water supply line instead of supplying water from the cooling-water line when the cooling-water pump is not driven.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 17, 2013
    Applicants: TOKYO ELECTRIC POWER COMPANY, INCORPORATED, CHUBU ELECTRIC POWER COMPANY, INCORPORATED, JOHNSON CONTROLS DENMARK APS, KABUSHIKI KAISHA KOBE SEIKO SHO, DANISH TECHNOLOGICAL INSTITUTE, THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Ryo Fujisawa, Masatake Toshima, Toshikatsu Kanemura, Yashihiro Nakayama, Koichiro Iizuka, Satoshi Ide, Kunihiko Suto, Kazutaka Kurashige, Ichirou Sakuraba, Daisuke Hayashi, Keiji Sugano, Shinji Shato, Hans Madsboll, Klaus Damgaard Kristensen
  • Patent number: 8353979
    Abstract: A heat recovery apparatus, for an absorption apparatus for removing CO2 in combustion exhaust gas emitted from a thermal power plant 112 and for regeneration apparatuses 104 to 107 for regenerating CO2 in an absorbing liquid from the absorption apparatus, includes a regeneration-apparatus-exit-CO2-gas cooling apparatus 100 for cooling CO2 gas from an exhaust port of the regeneration apparatus, and may further include a circulation line 102 for circulating reflux water among boiler feedwater heaters 114 and 116 in the thermal power plant 112 and the regeneration-apparatus-exit-CO2-gas cooling apparatus 100.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 15, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Takahiko Endo, Masahiko Tatsumi, Yasuyuki Yagi
  • Publication number: 20130011280
    Abstract: An axial flow compressor includes: an electric motor including a rotating shaft; a compression portion including a driving shaft connected without a speed-up gear to the rotating shaft of the electric motor and a rotor rotating together with the driving shaft, the compression portion driving the driving shaft and thereby compressing a working fluid; and a velocity reducing portion having a space for reducing the flow velocity of a working fluid discharged from a discharge opening of the compression portion. The rotating shaft of the electric motor is connected to the end of the driving shaft on the side of the discharge opening; and the velocity reducing portion is disposed so as to surround the electric motor.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 10, 2013
    Applicants: TOKYO ELECTRIC POWER COMPANY, INCORPORATED, CHUBU ELECTRIC POWER COMPANY, INCORPORATED, JOHNSON CONTROLS DENMARK APS, KABUSHIKI KAISHA KOBE SEIKO SHO, DANISH TECHNOLOGICAL INSTITUTE, THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Yoshihiro Nakayama, Yoshitaka Baba, Satoshi Ide, Koichiro Iizuka, Ryo Fujisawa, Masatake Toshima, Kunihiko Suto, Kazutaka Kurashige, Hiroshi Egawa, Ichirou Sakuraba, Daisuke Hayashi, Keiji Sugano, Svend Rasmussen, Ziad Al-Janabi, Finn Jensen, Lars Bay Moller, Hans Madsboll, Christian Svarregaard-Jensen, Klaus Damgaard Kristensen
  • Publication number: 20120318141
    Abstract: A CO2 recovery unit includes an absorber that reduces CO2 in flue gas (101) discharged from a combustion facility (50) by absorbing CO2 by an absorbent, a regenerator that heats the absorbent having absorbed CO2 to emit CO2, and regenerates and supplies the absorbent to the absorber, and a regenerating heater that uses steam (106) supplied from the combustion facility (50) for heating the absorbent in the regenerator and returns heated condensed water (106a) to the combustion facility (50). The CO2 recovery unit further includes a condensed water/flue gas heat exchanger (57) that heats the condensed water (106a) to be returned from the regenerating heater to the combustion facility (50) by heat-exchanging the condensed water (106a) with the flue gas (101) in a flue gas duct (51) in the combustion facility (50).
    Type: Application
    Filed: January 11, 2011
    Publication date: December 20, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuya Tsujiuchi, Hiromitsu Nagayasu, Takuya Hirata, Keiji Fujikawa, Tetsuya Imai, Hiroshi Tanaka, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Patent number: 8333086
    Abstract: In the condenser provided with two of the degassing chambers separated by a cooling fluid, communication between the degassing chambers is prevented even if a pressure difference is increased between the degassing chambers.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: December 18, 2012
    Assignees: The Tokyo Electric Power Company, Incorporated, Chubu Electric Power Co., Inc., Kansai Electric Power Co., Inc., Kobe Steel, Ltd., Danish Technological Institute, Johnson Controls Denmark APS
    Inventors: Ryo Fujisawa, Kazuto Okada, Masatake Toshima, Yoshihiro Nakayama, Koichiro Iizuka, Satoshi Ide, Kunihiko Suto, Kazutaka Kurashige, Ichirou Sakuraba, Daisuke Hayashi, Shinji Shato, Masaki Ikeuchi, Hans Madsboll, Christian Svarregaard-Jensen
  • Publication number: 20120285171
    Abstract: A heat recovery system of a CO2 recovery unit (55) including an absorber that removes CO2 in flue gas (101) discharged from a boiler (51) by absorbing CO2 by an absorbent, and a regenerator that emits CO2 from the absorbent having absorbed CO2 for reusing the absorbent in the absorber. The heat recovery system further includes a Ljungström heat exchanger (57) that performs heat exchange between the flue gas (101) discharged from the boiler (51) and before reaching the CO2 recovery unit (55) and unburned air (102) supplied to the boiler (51), and an air preheater (58) that preheats the unburned air (102) before reaching the Ljungström heat exchanger (57) by exhaust heat from the CO2 recovery unit (55).
    Type: Application
    Filed: January 11, 2011
    Publication date: November 15, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Tsuyoshi Oishi, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
  • Publication number: 20120269690
    Abstract: A carbon dioxide recovery system includes a carbon dioxide absorption tower for absorbing carbon dioxide in combustion exhaust gas into an absorbing solution by bringing the combustion exhaust gas into contact with the absorbing solution that absorbs carbon dioxide; a dissolved oxygen removing device that uses at least one device of a device for blowing bubbling gas into the rich absorbing solution into which carbon dioxide has been absorbed, a device for applying ultrasonic oscillation, and a device for heating the rich absorbing solution; a bubble removing device that turns the rich absorbing solution in the carbon dioxide absorption tower into a swirling flow or agitates the rich absorbing solution; and a regeneration tower that regenerates the absorbing solution by releasing carbon dioxide from the absorbing solution from which oxygen has been removed by the dissolved oxygen removing device and the bubble removing device and obtains carbon dioxide gas.
    Type: Application
    Filed: January 25, 2012
    Publication date: October 25, 2012
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Koji Kadono, Kazuhiko Kaibara
  • Patent number: 8288051
    Abstract: A solid oxide fuel cell includes a separator which has a fuel gas passageway and an oxidant gas passageway thereinside, and a plurality of power generation cells arranged in a parallel connection state on the same plane. Each of the power generation cells has a solid electrolyte layer sandwiched between a fuel electrode layer and an oxidant electrode layer. The oxidant gas passageway may start at an edge portion of the separator, extend to a central portion of the separator at a position enclosed by the power generation cells, be divided at the central portion, and be introduced in a portion facing the respective oxidant electrode layer.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: October 16, 2012
    Assignees: Mitsubishi Materials Corporation, The Kansai Electric Power Co., Inc.
    Inventor: Jun Akikusa
  • Patent number: 8231719
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 31, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Ryuji Yoshiyama, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8226748
    Abstract: A CO2 reducing system (10A) is constituted by a low-temperature CO2 reducing apparatus (11-1) that includes a low-temperature absorber (1006-1) that reduces at least one of CO2 and H2S by bringing flue gas (1002) including at least one of CO2 and H2S into contact with a low-temperature absorbing solution (1005-1), a low-temperature regenerator (1008-1) that regenerates a low-temperature rich solution (1007-1), a low-temperature rich-solution supply line (12-1) that feeds the low-temperature rich solution (1007-1) to the low-temperature regenerator (1008-1), and a low-temperature lean-solution supply line (13-1) that feeds a low-temperature lean solution (1009-1) to the low-temperature absorber (1006-1) from the low-temperature regenerator (1008-1); and a high-temperature CO2 reducing apparatus (11-2) that is arranged on a side at which the flue gas (1002) is discharged, and that has the same configuration as the low-temperature CO2 reducing apparatus (11-1).
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: July 24, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Yukihiko Inoue, Ryuji Yoshiyama, Tsuyoshi Oishi, Masaki Iijima, Masazumi Tanoura, Tomio Mimura, Kouki Ogura, Yasuyuki Yagi
  • Patent number: 8221911
    Abstract: The invention provides an operating method of a redox flow battery capable of grasping a charging state of the battery more reliably to stabilize an output capacity of the battery. The method is for operating the redox flow battery comprising a cell stack 1 comprising a plurality of cells. A selected cell(s) in the cell stack 1, to and from which positive electrode electrolyte and negative electrode electrolyte are supplied and discharged and which is/are not normally connected to a DC/AC converter 225, is/are in the form of an auxiliary cell 2 used for measuring a charging rate of the electrolyte. Also, a stop of charge of a main cell 3 and a stop of discharge of the main cell 3 are controlled with reference to a circuit voltage obtained from the auxiliary cell 2. Since the auxiliary cell 2 is integrally incorporated in the cell stack 1, the charging state of the battery can be grasped reliably without stopping the charge/discharge operation of the main cell 3.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: July 17, 2012
    Assignees: Sumitomo Electric Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Takahiro Kumamoto, Nobuyuki Tokuda
  • Patent number: 8178949
    Abstract: Bipolar semiconductor devices have a Zener voltage controlled very precisely in a wide range of Zener voltages (for example, from 10 to 500 V). A bipolar semiconductor device has a mesa structure and includes a silicon carbide single crystal substrate of a first conductivity type, a silicon carbide conductive layer of a first conductivity type, a highly doped layer of a second conductivity type and a silicon carbide conductive layer of a second conductivity type which substrate and conductive layers are laminated in the order named.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 15, 2012
    Assignees: The Kansai Electric Power Co., Inc., Central Research Institute of Electric Power Industry
    Inventors: Ryosuke Ishii, Koji Nakayama, Yoshitaka Sugawara, Hidekazu Tsuchida
  • Patent number: 8167807
    Abstract: A motion parameter measuring unit two-dimensionally measures a motion parameter of a myocardial tissue by a tracking process on time-series ultrasonic image data acquired from a sample. A time phase setting unit adds a diastolic heartbeat time phase, which is set on the basis of a systole end specified by a time phase where a cardiac cavity area of the ultrasonic image data is the smallest and a diastole end specified by an R wave in an electrocardiographic waveform of the sample, relative to the systole end to time-series parameter image data generated by a parameter image data generating unit on the basis of the motion parameter. An image data extracting unit extracts parameter image data to which the diastolic heartbeat time phase closest to a desired diastolic heartbeat time phase set by an input unit is added and displays the extracted parameter image data.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 1, 2012
    Assignees: Toshiba Medical Systems Corporation, The Kansai Electric Power Co., Inc.
    Inventors: Tetsuya Kawagishi, Yasuhiko Abe, Hiroyuki Ohuchi, Katsuhisa Ishii
  • Patent number: 8147593
    Abstract: An absorbing solution according to the present invention is an absorbing solution that absorbs CO2 or H2S in gas or both of CO2 and H2S. The absorbing solution is formed by adding desirably 1 to 20 weight percent of tertiary monoamine to a secondary-amine composite absorbent such as a mixture of secondary monoamine and secondary diamine. Consequently, it is possible to control degradation in absorbing solution amine due to oxygen or the like in gas. As a result, it is possible to realize a reduction in an absorption loss, prevention of malfunction, and a reduction in cost. This absorbing solution is suitably used in an apparatus for removing CO2 or H2S or both of CO2 and H2S.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: April 3, 2012
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Tomio Mimura, Yasuyuki Yagi, Kouki Ogura, Masaki Iijima, Toru Takashina, Hiroshi Tanaka, Takuya Hirata
  • Patent number: 8137441
    Abstract: A CO2 recovery system includes an absorption tower and a regeneration tower. CO2 rich solution is produced in the absorption tower by absorbing CO2 from CO2-containing gas. The CO2 rich solution is conveyed to the regeneration tower where lean solution is produced from the rich solution by removing CO2. A reclaimer heats the lean solution that is produced in the regeneration tower to produce a condensed waste-product from the lean solution by condensing a depleted material contained in the lean solution, and removes the condensed waste-product. A cooler cools the condensed waste-product.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 20, 2012
    Assignees: Mitsubishi Heavy Industries Ltd., The Kansai Electric Power Co., Inc
    Inventors: Masaki Iijima, Tomio Mimura, Yasuyuki Yagi
  • Publication number: 20110318697
    Abstract: Provided is a ground flare in which a low-frequency vibration generated from a ground flare tower, such as a chimney, is properly adjusted to suppress it below a fixture-vibration generation limit, thereby preventing surrounding objects from resonating and vibrating. In a ground flare that burns a flammable exhaust gas with a burner at the lower end of a chimney, in which the lower end of the chimney and the periphery of the burner are surrounded by a windbreak, the low-frequency-noise sound pressure level of a ground flare tower composed of the chimney and the windbreak is reduced by selecting at least one of changing a natural frequency generated from the ground flare tower, using multiple ground flare towers, and installing a low-frequency-vibration absorber in the ground flare tower.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 29, 2011
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., HOKKAIDO ELECTRIC POWER COMPANY, INCORPORATED, TOHOKU ELECTRIC POWER CO., INC., THE TOKYO ELECTRIC POWER COMPANY, INCOPORATED, CHUBU ELECTRIC POWER CO., INC., CLEAN COAL POWER R&D CO., LTD., THE KANSAI ELECTRIC POWER CO., INC., THE CHUGOKU ELECTRIC POWER CO., INC., SHIKOKU ELECTRIC POWER CO., INC., KYUSHU ELECTRIC POWER CO., INC., ELECTRIC POWER DEVELOPMENT CO., LTD., HOKURIKU ELECTRIC POWER COMPANY
    Inventors: Katsuhiko Yokohama, Iwao Honda, Naoki Suganuma, Hirofumi Ando, Naoshige Yoshida, Yoshihiko Horie, Hitoshi Terada, Toru Kawai, Atsushi Kimura
  • Patent number: 8074520
    Abstract: A transmission probe and a reception probe for transmitting and receiving a wideband ultrasonic wave are provided. Each time when the locations of the probes and are moved, a received wave Gj(t) is obtained. Based on a spectrum Fj(f) corresponding to the received wave Gj(t), a narrowband spectrum FAj(f) is extracted. A component wave GAj(t) corresponding to the narrowband spectrum FAj(f) is found by inverse Fourier transformation. A longitudinal wave primary resonance frequency f1 having a relationship with a thickness W (mm) of an inspection target and a primary resonance frequency fS1 of a transverse wave generated by mode conversion are calculated. A comparative display of the component waves GAj(t) is presented using f1, fS1 and sizing coefficients ns1, ns2, ns3 and ns4 for high precision inspection.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: December 13, 2011
    Assignees: H & B System Co., Ltd., The Kansai Electric Power Co., Inc., Kozo Keikaku Engineering Inc.
    Inventors: Masayuki Hirose, Masashi Kameyama, Yukihisa Hasegawa, Nobuki Dohi, Hong Zhang, Mitsuo Okumura
  • Patent number: 8052948
    Abstract: A CO2 recovery system includes an absorption tower and a regeneration tower. CO2 rich solution is produced in the absorption tower by absorbing CO2 from CO2-containing gas. The CO2 rich solution is conveyed to the regeneration tower where lean solution is produced from the rich solution by removing CO2. A compressor compresses CO2 that is removed from the rich solution and discharged through a head of the regeneration tower. Heat is generated while the compressor compresses the CO2. A heat supplying unit supplies the heat to the regeneration tower for heating the lean solution.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 8, 2011
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventor: Masaki Iijima
  • Patent number: 8034496
    Abstract: The present invention provides a highly efficient fuel cell having a fuel reformer which can efficiently recover the exhaust heat from fuel cell stacks and can realize high conversion. In a fuel cell (1), a large number of power generating cells (7) are laminated to constitute a fuel cell stack (3). At least four fuel cell stacks (3) are squarely-arranged in a plane direction in a housing (2). A fuel reformer (30) filled with a reforming catalyst (33) is arranged in a cross shape in between the mutually facing sides of the fuel cell stacks (3).
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: October 11, 2011
    Assignees: Mitsubishi Materials Corporation, The Kansai Electric Power Co., Inc.
    Inventor: Katsuya Hirata