Patents Assigned to The Regents of the University
  • Publication number: 20240161305
    Abstract: Methods, apparatuses, systems, and implementations for creating 3-dimensional (3D) representations exhibiting geometric and surface characteristics of brain lesions are disclosed. 2D and/or 3D MRI images of the brain may be acquired. Brain lesions and other abnormalities may be identified and isolated with each lesion serving as a region of interest (ROI). Saved ROI may be converted into stereolithography format, maximum intensity projection (MIP) images, and/or orthographic projection images. Data corresponding to these resulting 3D brain lesion images may be used to create 3D printed models of the isolated brain lesions using 3D printing technology. Analysis of the 3D brain lesion images and the 3D printed brain lesion models may enable a more efficient and accurate way of determining brain lesion etiologies.
    Type: Application
    Filed: August 14, 2023
    Publication date: May 16, 2024
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Darin T OKUDA, Braeden D NEWTON
  • Publication number: 20240161874
    Abstract: Provided herein is a machine learning model to reconstitute T cell and B cell selections, and methods of use thereof. The methods provided herein include methods of prediction of the risk of developing an autoimmune disease or disorder, the risk of developing alloimmunity from organ or cellular transplant, the risk of developing graft-versus-host disease (GvHD) from organ or cellular transplant, the risk of developing alloimmunity from an adoptive T cell therapy, the risk of developing alloimmunity from a chimeric antigen receptor (CAR)-T cell therapy, and methods of prediction of the safety of an antibody drug in a subject. Also provided herein is a method of classifying T cell receptor p (TCRp) gene, and methods of use thereof. The methods provided include methods of determining an organ donor/organ recipient compatibility, methods of predicting graft versus host disease (GvHD) in a recipient, acute GvHD (aGvHD), chronic GvHD (cGvHD) and cancer relapse in a subject.
    Type: Application
    Filed: March 11, 2022
    Publication date: May 16, 2024
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Scott CHRISTLEY, Benjamin GREENBERG, Linsay COWELL, Jared OSTMEYER
  • Publication number: 20240156342
    Abstract: Described herein is the use of a visible near infrared (VNIR) hyperspectral imaging system as a non-invasive diagnostic tool for early detection of Alzheimer's disease (AD). Also described herein is the use of a VNIR hyperspectral imaging system in high throughput screening of potential therapeutics against AD.
    Type: Application
    Filed: September 25, 2023
    Publication date: May 16, 2024
    Applicant: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Robert Vince, Swati Sudhakar More
  • Publication number: 20240158722
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Application
    Filed: November 21, 2023
    Publication date: May 16, 2024
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20240156442
    Abstract: An apparatus for collecting a nasal specimen includes a device body with a nozzle at a distal end of the device body. The nozzle is configured to interface with a nasal cavity. The apparatus further includes an irrigation path and a collection path within the device body. The collection path may be separate from the irrigation path. The irrigation path is configured to direct a fluid from an irrigation chamber into the nasal cavity in order to dislodge a sample from the nasal cavity. When the fluid flows back out of the nasal cavity, the collection path is configured to direct at least a portion of the fluid and the sample dislodged from the nasal cavity into a collection chamber.
    Type: Application
    Filed: March 23, 2022
    Publication date: May 16, 2024
    Applicant: Board of Regents of the University of Nebraska
    Inventors: Thang Nguyen, Michael Wadman, Wesley Zeger
  • Publication number: 20240159942
    Abstract: A microlens array includes a bottom electrode chip, a sidewall electrode chip, and a top glass chip configured to cooperate to define an array of cavities, each one of the array of cavities containing a fluid. The fluid is a mixture of a polar liquid and a non-polar liquid, in contact with one of the array of sidewalls at a contact angle. The bottom electrode chip includes a plurality of electrical contacts. The sidewall electrode chip includes an array of sidewalls, each including an electrode layer and an insulator layer. When a voltage is applied across the fluid contained a cavity via electrical contacts and the electrode layer of the cavity, the contact angle of the fluid with the sidewall is modified, in embodiments without affecting the contact angle of fluid contained in other ones of the plurality of array of cavities.
    Type: Application
    Filed: November 13, 2023
    Publication date: May 16, 2024
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: Juliet T. Gopinath, Samuel D. Gilinsky, Mo Zohrabi, Victor M. Bright, Omkar D. Supekar, Wei Yang Lim
  • Publication number: 20240157442
    Abstract: A method and system are disclosed of assembling metal particles into nanoparticles. The method includes electromagnetically levitating the metal particles; inductively heating the electromagnetically levitated metal particles beyond their melting point into metal droplets; and wherein an evaporation flux achieved at a surface of the metal droplets result in a supersaturation of metal atoms around the metal droplets leading to nucleation and growth of the nanoparticles.
    Type: Application
    Filed: March 9, 2022
    Publication date: May 16, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael R. Zachariah, Reza Abbaschian, Pankaj Ghildiyal, Steven Herrera, Prithwish Biswas
  • Publication number: 20240157149
    Abstract: A cystoscopy system with intracranial electrodes operable to be disposed in a hippocampus region of a brain and configured to record electrical signals that include biomarkers related to memory encoding, a neurostimulator configured to stimulate a posterior cingulate cortex (PCC) of the brain, a NARXNN plant model, and a controller configured to receive the electrical signals and modulate an input/output (I/O) relationship between the biomarkers and electrical stimuli applied to a posterior cingulate cortex (PCC) of the brain by controlling the neurostimulator to stimulate the PCC based on the I/O relationship to achieve a desired level of the biomarkers.
    Type: Application
    Filed: November 6, 2023
    Publication date: May 16, 2024
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Xiaoliang Wang, Bradley Lega
  • Patent number: 11980410
    Abstract: A device includes an electrically conductive or electrically semiconductive material and a biocompatible porous scaffold around the electrically conductive or electrically semiconductive material. The biocompatible porous scaffold includes a biocompatible polymer and pores configured to capture metastatic cells.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: May 14, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Samira M. Azarin, Francisco Pelaez, Navid Manuchehrabadi, John C. Bischof
  • Patent number: 11980447
    Abstract: An esophageal deflection device includes an elongate outer tube that has a natural curved deflection at a position that corresponds to a targeted esophagus region for deflection. The outer diameter of the outer tube is substantially matched to an inner diameter of the esophagus to closely contact the esophagus wall, or is at least half of the inner diameter, or is smaller and includes suction ports for drawing the esophagus wall inward. An insertion rod or tube includes a portion that is stiffer than the curved deflection, and slides into the elongate outer tube to straighten the tube and can serve to guide the deflection device into an esophagus. Subsequent withdrawal of the insertion tube or rod will allow the curved deflection to return to its natural shape and deflect the targeted region of the esophagus.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 14, 2024
    Assignee: The Regents of the University of California
    Inventors: Karcher Morris, Anay Mahesh Pandit, Thomas Savides, Young Seo, Frank Talke, Youyi Fu, Greg Feld, Scott Garner
  • Patent number: 11980634
    Abstract: Methods of reconstituting lyophilized Annamycin and methods of treating patients are described.
    Type: Grant
    Filed: October 5, 2023
    Date of Patent: May 14, 2024
    Assignees: Moleculin Biotech, Inc., Board of Regents, The University of Texas System
    Inventors: Donald Picker, Waldemar Priebe
  • Patent number: 11984208
    Abstract: Methods comprising an integrated, multiscale artificial intelligence-based system that reconstructs drug-specific pharmacogenomic networks and their constituent functional sub-networks are described. The system uses features of the functional topology of the three-dimensional architecture of drug-modulated spatial contacts in chromatin space. Discovery of a drug pharmacogenomic network is made through the selection of candidate SNPs by imputation, determination of the predicted causality of the SNPs using machine learning and deep learning, use of the causal SNPs to probe the spatial genome as determined by chromosome conformation capture analysis, combining targeted genes controlled by the same cell and tissue-specific enhancers, and reconstruction of the pharmacogenomic network using diverse data sources and metrics based on the results of genome-wide association studies.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 14, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Brian D. Athey, Gerald A. Higgins, Alex Ade, Alexandr Kalinin, Narathip Reamaroon, James S. Burns
  • Patent number: 11981662
    Abstract: The inventors have used a differential nuclear staining (DNS) assay to discover compounds with cytotoxic activity against the CEM cell line that has been determined to be highly sensitive to a variety of anti-cancer compounds. Compounds were synthesized based on a pyrazole backbone structure. Several newly synthesized compounds have been tested to identify the compounds with highest activity. One compound identified is the SSK-3 compound which has been tested on cancer cell lines and determined that it induced apoptosis via phosphatidylserine membrane exposure and activation of caspase 3 in the CEM lymphoma cell line.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: May 14, 2024
    Assignees: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Renato J. Aguilera, Subhas S. Karki, Sujeet Kumar, Manuel L. Penichet
  • Patent number: 11980453
    Abstract: The disclosed embodiments provide a system that non-invasively analyzes blood flow in a sample of living tissue. During operation, the system obtains light from a temporally coherent source, and splits the obtained light between a reference path and a sample path. Next, the system multiply scatters light from the sample path by passing the light through the sample. The system then recombines light from the reference path and the multiply scattered light from the sample path. Next, the system uses a sensor array to detect an interference pattern resulting from the recombination. Finally, the system analyzes signals from the sensor array to determine a blood flow in the sample.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: May 14, 2024
    Assignee: The Regents of the University of California
    Inventors: Wenjun Zhou, Oybek Kholiqov, Vivek Jay Srinivasan
  • Patent number: 11981571
    Abstract: In various embodiments functionalized graphene oxide(s) are provided that demonstrate improved antimicrobial activity, where the graphene oxide(s) are functionalized to increase carbon radical (·C) density.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: May 14, 2024
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, NORTHWESTERN UNIVERSITY
    Inventors: Andre E. Nel, Tian Xia, Ruibin Li, Mark C. Hersam, Nikhita D. Mansukhani, Linda Guiney
  • Patent number: 11980462
    Abstract: Methods, systems, and devices are disclosed mouth-based biosensors and biofuel cells. In one aspect, an electrochemical sensor device for detecting analytes in saliva includes a substrate including an electrically insulative material, a first electrode disposed on the substrate at a first location, in which the first electrode includes a surface including a chemical agent (e.g., a catalyst or a reactant) corresponding to an analyte in saliva; and a second electrode disposed on the substrate at a second location separated from the first electrode by a spacing region, the first and second electrodes capable of sustaining a redox reaction involving the chemical agent and the analyte to produce an electrical signal, such that, when the device is present in the mouth of a user and electrically coupled to an electrical circuit, the device is operable to detect the analyte in the user's saliva.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: May 14, 2024
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Patrick Mercier
  • Patent number: 11981603
    Abstract: Printable cementitious compositions for additive manufacturing are provided, that have a fresh state and a hardened state. In fresh state, the composition is flowable and extrudable in the additive manufacturing process. In the hardened state, the composition exhibits strain hardening. In one variation, the strain hardening is represented by a uniaxial tensile strength of ?about 2.5 MPa, a tensile strain capacity of ?about 1%, and a compressive strength at 100 hours of ?about 20 MPa. In other variations, the composition includes Portland cement, a calcium aluminate cement, a fine aggregate, water, a high range water reducing agent (HRWRA), and a polymeric fiber, as well as one or more optional components selected from: fly ash, silica flour, microsilica, attapulgite nanoclay, and/or hydroxypropylmethyl cellulose (HPMC). Methods of additive manufacturing with such compositions are also provided.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: May 14, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Daniel G. Soltan, Victor C. Li
  • Patent number: 11980645
    Abstract: Compositions and methods of use for modulating bile acids, including phenylalanocholic acid, tyrosocholic acid and leucocholic acid, to treat diseases, such as inflammatory bowel disease. In embodiments, the invention provides pharmaceutical compositions that modulate levels of a bile acid conjugate in a subject. In embodiments, the invention provides pharmaceutical compositions that modulate levels of a bile acid conjugate in a particular organ or bodily region of the subject.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 14, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Pieter Dorrestein, Alexey Melnik, Alexander Aksenov, Robert Quinn
  • Patent number: 11981933
    Abstract: Devices, systems, and techniques are described for printing pre-aligned microtissues into larger tissue constructs. For example, a method of printing a tissue construct includes aligning cells in a first direction to create pre-aligned microtissues, suspending the pre-aligned microtissues in a liquid to create a bioink, and depositing the pre-aligned microtissues in a second direction to create the tissue construct.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: May 14, 2024
    Assignee: Regents of the University of Minnesota
    Inventors: Caleb Darwin Vogt, Angela Panoskaltsis-Mortari
  • Patent number: 11981700
    Abstract: The present disclosure provides pyrrolopyrimidine nucleoside analogs of the Formula I, Formula IA, Formula IB, or Formula II and phospholipid conjugates and pharmaceutical compositions thereof wherein Rc and A are defined herein. Also presented are methods of treating and/or preventing viral infection and/or viral infection-associated disease or disorder with one or more compounds of Formula I, Formula IA, Formula IB, or Formula II.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: May 14, 2024
    Assignees: Chimerix, Inc., The Regents of the University of Michigan
    Inventors: John Henry Bougher, III, Ramamurty V S Changalvala, Aaron Leigh Downey, John C. Drach, Ernest Randall Lanier, Jr., Andrew Louis McIver, Bradley David Robertson, Dean Wallace Selleseth, Phiroze Behram Sethna, Leroy Townsend, Roy W. Ware