Patents Assigned to The Regents of the University of Michigan
  • Publication number: 20220194306
    Abstract: Systems and methods are provided for wireless power transfer in a vehicle. A wireless power transfer system can include a high-frequency alternating current (HFAC) inverter electrically coupled to the power source and a transmitter to wirelessly transmit a HFAC power signal to at least one device of a vehicle, such as sensors (e.g., LiDAR, GPS etc.) and cameras. The HFAC power signal provides wireless power and a data signal to the at least one device of a vehicle. The wireless power transfer system can eliminate the need for cabling and wires to provide power to the device. Wireless power transfer can include use or a data modulation circuit and a pulse current source to inject a pulse current to the HFAC power signal as superimposed data. System configurations can power a plurality of devices. Systems can includes a plurality of HFAC inverters and transmitters to power multiple sets of devices.
    Type: Application
    Filed: February 1, 2021
    Publication date: June 23, 2022
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents Of The University Of Michigan
    Inventors: Yanghe LIU, Chungchih CHOU, Hiroshi UKEGAWA, Qunfang WU, Mengqi WANG, Weiyang ZHOU
  • Patent number: 11367801
    Abstract: Angle insensitive/angle-robust colored filter assemblies are provided for use with a photovoltaic device to create a decorative and colored photovoltaic device assembly. The filter may be passive or active with an ultrathin reflective layer of high refractive index material, like amorphous silicon (a-Si). A passive filter may have transparent first and second pairs of dielectric materials surrounding the ultrathin reflective layer. An active filter may have transparent first and second electrodes and first and second doped hole/electron transport layer surrounding the ultrathin reflective layer. The filter can transmit a portion and reflect a portion of the electromagnetic spectrum to generate a reflected color output with minimal angle dependence. Angle insensitive colored photovoltaic device assemblies having high power conversion efficiencies (e.g., ?18%) including a passive or active colored reflective filter and a photovoltaic device are also contemplated.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 21, 2022
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, Toyota Motor Corporation
    Inventors: Lingjie Jay Guo, Chengang Ji, Taizo Masuda, Yuki Kudo
  • Patent number: 11365016
    Abstract: A plasma propulsion system with no internal electrodes is described. Gas is flowed into an insulated axisymmetric plasma liner. A radio frequency antenna generates an inductive or helicon plasma discharge within the liner. The plasma is accelerated through a converging/diverging magnetic field out of the liner, generating thrust.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: June 21, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Benjamin Longmier, John Patrick Sheehan, Alec D. Gallimore
  • Patent number: 11364042
    Abstract: Methods for performing non-invasive thrombolysis with ultrasound using, in some embodiments, one or more ultrasound transducers to focus or place a high intensity ultrasound beam onto a blood clot (thrombus) or other vascular inclusion or occlusion (e.g., clot in the dialysis graft, deep vein thrombosis, superficial vein thrombosis, arterial embolus, bypass graft thrombosis or embolization, pulmonary embolus) which would be ablated (eroded, mechanically fractionated, liquefied, or dissolved) by ultrasound energy. The process can employ one or more mechanisms, such as of cavitational, sonochemical, mechanical fractionation, or thermal processes depending on the acoustic parameters selected. This general process, including the examples of application set forth herein, is henceforth referred to as “Thrombolysis.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: June 21, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Adam D. Maxwell, Zhen Xu, Hitinder S. Gurm, Charles A. Cain
  • Patent number: 11364923
    Abstract: A system and method of detecting and responding to a failure of one or more vehicle components, the method including: receiving system input at a failure detection module regarding the one or more vehicle components; determining a system state through use of one or more onboard vehicle sensors; obtaining a nominal state transition matrix and a nominal state input matrix; calculating a present state transition matrix estimate and a present state input matrix estimate based on the nominal state transition matrix, the nominal state input matrix, the system input, and a sampled state derivative; detecting a failure of at least one of the vehicle components based on one or more component parameters of the present state transition matrix estimate and/or the present state input matrix estimate; and performing a vehicle action in response to the detection of the failure.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: June 21, 2022
    Assignee: The Regents of the University of Michigan
    Inventor: William B. Ribbens
  • Publication number: 20220188642
    Abstract: The lack of robustness of Deep Neural Networks (DNNs) against different types of attacks is problematic in adversarial environments. The long-standing and arguably most powerful natural defense system is the mammalian immune system, which has successfully defended the species against attacks by novel pathogens for millions of years. This disclosure proposes a Robust Adversarial Immune-inspired Learning System (RAILS) inspired by the mammalian immune system. The RAILS approach is demonstrated using adaptive immune system emulation to harden Deep k-Nearest Neighbor (DkNN) architectures against evasion attacks. Using evolutionary programming to simulate new B-cell generation that occurs in natural immune systems, e.g., B-cell flocking, clonal expansion, and affinity maturation, it is shown that the RAILS learning curve exhibits similar learning behavior as observed in in-vitro experiments on B-cell affinity maturation. The life-long learning mechanism allows RAILS to evolve and defend against diverse attacks.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 16, 2022
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Indika RAJAPAKSE, Alfred HERO, Alnawaz REHEMTULLA, Ren WANG, Stephen LINDSLY
  • Patent number: 11362310
    Abstract: A device including an organic light emitting diode and a dielectric layer is provided. The dielectric layer provides additional distance between a reflector and the organic emission region, leading to improved reduction in non-emissive modes and enhanced efficiency.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 14, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. Forrest, Yue Qu
  • Patent number: 11361500
    Abstract: A method is disclosed for reconstructing three-dimensional video from two-dimensional video data using particle filtering and thereby generating training data for autonomous vehicles. In one version, the method comprises: receiving a set of annotations associated with a video frame comprising a view of at least a portion of a vehicle, each annotation comprising at least one two-dimensional line; removing at least one outlier from the set of annotations; determining an estimated vehicle model based on the set of annotations; and providing the estimated vehicle model to a driving simulator.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 14, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jean Young S. Kwon, Stephan Lemmer, Jason Corso, Walter S. Lasecki
  • Patent number: 11358965
    Abstract: Provided herein are compounds that modulate EGFR and methods of using the same, for example to treat cancer.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: June 14, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mukesh K. Nyati, Theodore S. Lawrence, Christopher Whitehead, Jason Christopher Rech, Brennan Taylor Watch
  • Patent number: 11362311
    Abstract: Substrates are disclosed that include an embedded or partially-embedded microlens array. Devices are disclosed that include an OLED disposed over a substrate having an embedded or partially embedded micro lens array. Devices as disclosed herein redirect up to 100% of the light that otherwise would be confined in organic and electrode layers toward the substrate and thus provide improved light extraction and device efficiency.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 14, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. Forrest, Yue Qu
  • Patent number: 11351923
    Abstract: A multi-layer bladder includes: a first bladder layer; a mask including a plurality of apertures; a second bladder layer bonded to the first bladder layer within the apertures in the mask and where the mask is not present between the first and second bladder layers, where the mask is configured to prevent bonding of the second bladder layer to the first bladder layer where the mask is present; and a fluid channel that is located between the first and second bladder layers and that extends to the mask from an outer edge of the multi-layer bladder.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 7, 2022
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Paul W. Alexander, Wonhee M. Kim, Jonathan E. Luntz, Diann Brei, Laura Alejandra Giner Munoz, Boyu Wan, Paul Q. Powers, Patrick K. Kenney, Koray Benli
  • Patent number: 11355824
    Abstract: An electrical device comprises a battery cell; a pressure sensor for measuring swelling forces of the battery cell, optionally with voltage, temperature and current sensors, and a battery management system including a controller. The controller executes a program to: (i) determine a reference swelling force corresponding to a reference electrical signal received from the pressure sensor at an earlier reference time, (ii) determine a second swelling force corresponding to a second electrical signal received from the pressure sensor at a later second time, and (iii) determine whether a risk of internal short circuit of the battery cell exists by comparing a reference level of the reference electrical signal and a signal representative of the second electrical signal. When the signal representative of the second electrical signal exceeds the reference level of the reference electrical signal by a threshold amount, a risk of internal short circuit of the cell exists.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 7, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Anna G. Stefanopoulou, Jason B. Siegel, Sravan Pannala, Gregory B. Less, Ting Cai, Mingxuan Zhang
  • Patent number: 11353274
    Abstract: A thermal management system for a body to be exposed to solar radiation includes an infrared radiating element and a solar-scattering cover disposed on or integrated with the infrared radiating element.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: June 7, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Andrej Lenert, Hannah Meekyung Kim
  • Patent number: 11349099
    Abstract: A method of fabricating a light emitting device comprises providing a mold having an unpolished surface with an arithmetic mean roughness Ra in a range from 0.1 ?m to 10 ?m, depositing a thin polymer film over the surface of the mold, wherein the film has a thickness in a range from 1 ?m to 100 ?m, positioning a light emitting body onto the thin polymer film, wherein the light emitting body includes an anode, a cathode, and a light emitting layer positioned between the anode and the cathode, and separating the thin polymer film with the light emitting body from the mold. A light emitting device is also described.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: May 31, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Yue Qu, Xiaheng Huang, Stephen R. Forrest
  • Patent number: 11348786
    Abstract: The superior electronic and mechanical properties of 2D-layered transition metal dichalcogenides and other 2D layered materials could be exploited to make a broad range of devices with attractive functionalities. However, the nanofabrication of such layered-material-based devices still needs resist-based lithography and plasma etching processes for patterning layered materials into functional device features. Such patterning processes lead to unavoidable contaminations, to which the transport characteristics of atomically-thin layered materials are very sensitive. More seriously, such lithography-introduced contaminants cannot be safely eliminated by conventional material wafer cleaning approaches. This disclosure introduces a rubbing-induced site-selective growth method capable of directly generating few-layer molybdenum disulfide device patterns without the need of any additional patterning processes.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 31, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Xiaogan Liang, Byunghoon Ryu
  • Patent number: 11337862
    Abstract: An ear splint for an ear is provided having a central portion having an exterior surface defining a first topology that is configured to dwell within an anterior scaphoid section of an ear, and a wing portion extending from the central portion and integrally formed therewith and at least partially surrounding an outer periphery of the central portion. The wing portion includes an exterior surface defining a second topology and is configured to be positioned along a postauricular area of the ear. The first magnetic device is disposed in the central portion and the second magnetic device is disposed in the wing portion. The magnetic retention feature exert a magnetic attractive force between the central portion and the wing portion such that at least a portion of the exterior surface of the central portion and at least a portion of the exterior surface of the wing portion contact the ear.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: May 24, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: David Zopf, Kevin Green, Kyle Vankoevering
  • Patent number: 11342526
    Abstract: An OLED device comprises an anode and a cathode, and at least one graded emissive layer disposed between the anode and the cathode, the graded emissive layer comprising first and second materials, wherein a concentration of the first material increases continuously from an anode side of the graded emissive layer to a cathode side of the graded emissive layer, and a concentration of the second material decreases continuously from the anode side of the graded emissive layer to the cathode side of the graded emissive layer. An OLED device comprising a graded emissive layer and a hybrid white OLED device are also described.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: May 24, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Chan Ho Soh, Mark E. Thompson, Muazzam Idris
  • Patent number: 11339246
    Abstract: The present application can provide a preparation method that can effectively produce a polymer having desired molecular weight characteristics and solubility in a solvent, and having a monomer composition, which is designed freely and variously according to the purpose, without unnecessary components with excellent polymerization efficiency and conversion rates, and a dispersion comprising the polymer formed by the preparation method.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: May 24, 2022
    Assignees: LG ENERGY SOLUTION, LTD., REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Joon Koo Kang, Jeong Ae Yoon, Jong Heon Kwak, Sung Soo Yoon, Jinsang Kim
  • Patent number: 11342176
    Abstract: An integrated electrohydrodynamic jet printing and spatial atomic layer deposition system for conducting nanofabrication includes an electrohydrodynamic jet printing station that includes an E-jet printing nozzle, a spatial atomic layer deposition station that includes a zoned ALD precursor gas distributor that discharges linear zone-separated first and second ALD precursor gases, a heatable substrate plate supported on a motion actuator controllable to move the substrate plate in three dimensions, and a conveyor on which the motion actuator is supported. The conveyor is operative to move the motion actuator between the electrohydrodynamic jet printing station and the spatial atomic layer deposition station so that the substrate plate is conveyable between a printing window of the E-jet printing nozzle and a deposition window of the zoned ALD precursor gas distributor, respectively. A method of conducting area-selective atomic layer deposition is also disclosed.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 24, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Mattison Rose, Kira Barton, Neil Dasgupta, Lauren Ransohoff, Ellis Herman, Orlando Trejo, Carli Huber, Tae H. Cho, Eric Kazyak, Christopher P. Pannier
  • Patent number: 11333798
    Abstract: A compound metaoptic is presented. The compound metaoptic is comprised of at least two phase-discontinuous metasurfaces, which can convert an incident light beam to an aperture field with a desired magnitude, phase, and polarization profile. Each of the constitutive metasurfaces is designed to exhibit specific refractive properties, which vary along the metasurface. Furthermore, due to its transmission-based operation, the metaoptic can operate without lenses and be low profile: potentially having a thickness on the order of a few wavelengths or less. A systematic design procedure is also presented, which allows conversion between arbitrary complex-valued field distributions without reflection, absorption or active components. Such compound metaoptics may find applications where a specific complex field distribution is desired, including displaying holographic images and augmented or virtual reality systems.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: May 17, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Brian Raeker, Anthony Grbic