Patents Assigned to The Royal Institution for the Advancement of Learning (McGill University)
  • Patent number: 10352935
    Abstract: The present invention relates to a method for diagnosis of cancer and for monitoring the progression of cancer and/or the therapeutic efficacy of an anti-cancer treatment in a sample of a subject by detecting oncogenic and cancer related proteins in microvesicles, and to the use of an agent blocking exchange of microvesicles for treating cancer.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: July 16, 2019
    Assignees: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY, THE HOSPITAL FOR SICK CHILDREN
    Inventors: Janusz Rak, Khalid Al-Nedawi, Brian Meehan, Abhijit Guha
  • Patent number: 10351963
    Abstract: Important components of direct solar based nanowire enabled chemical processing and electrochemical systems are a high efficiency and highly stable photocathode and 2-photon dual electrodes. The former enables photo-excited electrons that lead to hydrogen generation whereas the later with complementary energy bandgap photoanode and photocathode enables high efficiency, unassisted solar-driven water splitting. Accordingly, it would be beneficial to leverage the high surface areas and self-contained conversion of direct solar illuminated hydrogen generation from such nanowires with multiple junctions for broad solar spectrum absorption by providing monolithically integrated multi-junction photocathodes. It would be further beneficial to provide nanowire based dual-photoelectrode systems that together with a parallel illumination scheme, can fundamentally address these critical challenges.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: July 16, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/ MCGILL UNIVERSITY
    Inventors: Zetian Mi, Shizhao Fan, Bandar Alotaibi
  • Patent number: 10328092
    Abstract: Methods of reducing AMPA/NMDA ratio in D1-type medium spiny neurons (MSN) and/or reducing development of behavioral sensitization or suppressing drug induced behavioral sensitization in a subject, optionally a subject that is afflicted with an addiction, the method comprising administering to the subject in need thereof an effective amount of a Toll-like receptor 4 (TLR4) agonist or a composition comprising said TLR4 agonist, preferably wherein the TLR4 agonist is a monophosphoryl lipid A (MPLA).
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: June 25, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING / MCGILL UNIVERSITY
    Inventors: David Stellwagen, Gil Moshe Lewitus
  • Patent number: 10329194
    Abstract: Highly mineralized natural materials often boast unusual combinations of stiffness, strength and toughness currently unmatched by today's engineering materials. Beneficially, according to the embodiments of the invention, these unusual combinations can be introduced into ceramics, glasses, and crystal materials, for example by the introduction of patterns of weaker interfaces with simple or intricate architectures, which channel propagating cracks into toughening configurations. Further, such deliberately-introduced weaker interfaces, such as exploiting three-dimensional arrays of laser-generated microcracks, can deflect and guide larger incoming cracks. Addition of interlocking interfaces and flexible materials provide further energy dissipation and toughening mechanism, by channeling cracks into interlocking configurations and ligament-like pullout mechanisms. Such biomimetic materials, based on carefully architectured interfaces, provide a new pathway to toughening hard and brittle materials.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: June 25, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Francois Barthelat, Seyed Mohammad Mirkhalaf Valashani, Ahmad Khayer Dastjerdi
  • Patent number: 10329156
    Abstract: The present describes an oxygen functionalized nanoflake (O-GNF), a stable nanofluid in which the graphene nanoflakes remain dispersed or in suspension free of surfactants, and the method of making the oxygen-functionalized nanoflake. The oxygen-functionalized graphene nanoflake (O-GNF and/or O—N-GNF) comprises a single-crystal graphene nanoflake of 5-20 atomic planes comprising a surface oxygen-functionalization, wherein the O-GNF comprise a degree of oxygen functionalization from about 6 to about 25 at. % oxygen by weight of the GNF with a preferred oxygen functionalization of about 14 at. % oxygen.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: June 25, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Jean-Luc Meunier, Dimitrios Berk, Ulrich Legrand, Norma-Yadira Mendoza Gonzalez, Pierre-Alexandre Pascone
  • Patent number: 10317407
    Abstract: The present invention relates to a method for diagnosis of cancer and for monitoring the progression of cancer and/or the therapeutic efficacy of an anti-cancer treatment in a sample of a subject by detecting oncogenic proteins in microvesicles, and to the use of an agent blocking exchange of microvesicles for treating cancer.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: June 11, 2019
    Assignees: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY, THE HOSPITAL FOR SICK CHILDREN
    Inventors: Janusz Rak, Khalid Al-Nedawi, Brian Meehan, Abhijit Guha
  • Patent number: 10307769
    Abstract: There is described herein methods and devices for confining and/or manipulating molecules. At least one molecule is introduced into a fluidic chamber. The fluidic chamber is formed inside a device comprising at least one first electrode having a first surface spaced from at least one second electrode having a second surface facing the first surface. The at least one second electrode has a plurality of dielectric structures arranged to form openings along the second surface. At least one electrical signal is applied across the at least one first electrode and the at least one second electrode to generate a non-uniform electric field having electric field lines extending from the first surface of the at least one first electrode to the second surface of the at least one second electrode in the openings formed between the dielectric structures. The at least one electrical signal has a frequency level causing the at least one molecule to move inside the fluidic chamber in accordance with a predetermined movement.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: June 4, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Sara Mahshid, Mohammed Jalal Ahamed, Walter Reisner, Robert Sladek
  • Patent number: 10312869
    Abstract: There is described herein methods and devices for high DC gain closed loop operation amplifiers exploiting cascaded low gain stages and a controller-based compensation circuit for stability.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 4, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING / MCGILL UNIVERSITY
    Inventors: Gordon Roberts, Ming Yang
  • Patent number: 10301357
    Abstract: The present disclosure provides agents capable of promoting endogenous steroid production (such as endogenous testosterone production) without altering the endogenous luteinizing hormone. The present disclosure also provides associated therapeutic methods as well as screening assays for identifying further therapeutic agents for the prevention, treatment and/or alleviations of symptoms associated with hypogonadism.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: May 28, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Vassilios Papadopoulos, Yasaman Aghazadeh, Jinjiang Fan
  • Patent number: 10300485
    Abstract: Methods and apparatuses for performing a nanoarray-in-microarray assay is provided, which can be used to estimate a protein concentration in a sample solution. A plurality of nanodots are fabricated on a surface having at least one affinity binder. One or more microspots are superimposed over the nanodots on predetermined regions of the surface, each of the microspots comprising at least one antibody. An assay process is performed on the surface, and the surface is imaged to acquire optical images of the nanodots within each microspot. Image analysis algorithms are the performed on the optical images to identify bindings on individual ones of the plurality of nanodots.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: May 28, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: David Juncker, Gina Zhou, Sebastien Bergeron
  • Patent number: 10305514
    Abstract: There is described a multi-mode unrolled decoder. The decoder comprises a master code input configured to receive a polar encoded master code of length N carrying k information bits and N?k frozen bits, decoding resources comprising processing elements and memory elements connected in an unrolled architecture and defining an operation path between the master code input and an output, for decoding a polar encoded code word, at least one constituent code input configured to receive a polar encoded constituent code of length N/p carrying j information bits and N/p?j frozen bits, where p is a power of 2, and at least one input multiplexer provided in the operation path to selectively transmit N/p bits of one of the master code and the constituent code to a subset of the decoding resources.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: May 28, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Pascal Giard, Gabi Sarkis, Warren Gross, Claude Thibeault
  • Patent number: 10290767
    Abstract: GaN-based nanowire heterostructures have been intensively studied for applications in light emitting diodes (LEDs), lasers, solar cells and solar fuel devices. Surface charge properties play a dominant role on the device performance and have been addressed within the prior art by use of a relatively thick large bandgap AlGaN shell covering the surfaces of axial InGaN nanowire LED heterostructures has been explored and shown substantial promise in reducing surface recombination leading to improved carrier injection efficiency and output power. However, these lead to increased complexity in device design, growth and fabrication processes thereby reducing yield/performance and increasing costs for devices. Accordingly, there are taught self-organizing InGaN/AlGaN core-shell quaternary nanowire heterostructures wherein the In-rich core and Al-rich shell spontaneously form during the growth process.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: May 14, 2019
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Zetian Mi, Songrui Zhao, Renjie Wang
  • Patent number: 10291200
    Abstract: MEMS based sensors, particularly capacitive sensors, potentially can address critical considerations for users including accuracy, repeatability, long-term stability, ease of calibration, resistance to chemical and physical contaminants, size, packaging, and cost effectiveness. Accordingly, it would be beneficial to exploit MEMS processes that allow for manufacturability and integration of resonator elements into cavities within the MEMS sensor that are at low pressure allowing high quality factor resonators and absolute pressure sensors to be implemented. Embodiments of the invention provide capacitive sensors and MEMS elements that can be implemented directly above silicon CMOS electronics.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: May 14, 2019
    Assignee: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Vamsy Chodavarapu, George Xereas
  • Patent number: 10287313
    Abstract: The present invention is directed to RNA monomers comprising O-acetal levulinyl protecting groups at the 2? and/or the 5?-hydroxy functionalities of the ribose moiety. Said monomers may be incorporated into oligoribonucleotides or RNA polynucleotides. Furthermore, the invention is directed to methods for the synthesis of said RNA monomers, oligoribonucleotides and RNA polynucleotides, as well as methods for their deprotection and methods for the use of said compounds and compositions comprising said compounds. In particular, such compounds and compositions comprising them are used in methods for light-directed synthesis of RNA microarrays.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: May 14, 2019
    Assignees: The Royal Institution for the Advancement of Learning/McGill University, Wisconsin Alumni Research Foundation
    Inventors: Masad Damha, Jeremy Lackey, Debbie Mitra, Marvin Wickens, Franco Cerrina, Mark Somoza
  • Publication number: 20190118017
    Abstract: The present disclosure relates to use of rhamnolipid coated nanoparticles of zero valent iron (NZVI), either in its bare form or functionalized with other materials (M) such as trace amounts of a palladium catalyst, for transforming chlorinated solvent pollutants by targeting the non-aqueous phase, which contains said chlorinated solvent pollutants. The method may be useful as water treatment technology for restoration of groundwater resources contaminated with toxic, chlorinated solvent pollutants as well as in the treatment of industrial waste of chlorinated solvents in reactor systems.
    Type: Application
    Filed: April 13, 2017
    Publication date: April 25, 2019
    Applicants: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY, THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Subhasis GHOSHAL, Sourjya BHATTACHARJEE
  • Patent number: 10206906
    Abstract: It is provided an anti-microbial composition comprising a phenolic-rich extract such as a phenolic-rich maple syrup extract (PRMSE) and at least one antibiotic and a method of treating a bacterial infection comprising administering to a subject in need thereof a phenolic-rich extract and at least one antibiotic.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: February 19, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Nathalie Tufenkji, Vimal Maisuria
  • Patent number: 10208025
    Abstract: A triazole bridged flavonoid dimer compound library was efficiently constructed via the cycloaddition reaction of a series of flavonoid-containing azides (Az 1-15) and alkynes (Ac 1-17). These triazole bridged flavonoid dimers and their precursor alkyne- and azide-containing flavonoids were screened for their ability to modulate multidrug resistance (MDR) in P-gp-overexpressed cell line (LCC6MDR), MRP1-overexpressed cell line (2008/MRP1) and BCRP-overexpressed cell line (HEK293/R2 and MCF7-MX100). Generally, they displayed very promising MDR reversal activity against P-gp-, MRP1- and BCRP-mediated drug resistance. Moreover, they showed different levels of selectivity for various transporters. Overall, they can be divided into mono-selective, dual-selective and multi-selective modulators for the P-gp, MRP1 and BCRP transporters.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: February 19, 2019
    Assignees: The Hong Kong Polytechnic University, The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Larry Ming Cheung Chow, Tak Hang Chan, Kin Fai Chan, Iris Lai King Wong, Man Chun Law
  • Patent number: 10202420
    Abstract: An isolated polypeptide comprising a peptide selected from: i) DHX1SDNYT, wherein X1 is L or H (SEQ ID NO:3); ii) a conservative variant of i) iii) a fragment of i) or ii); wherein the conservative variant and/or fragment retains biological activity and the peptide is 15 or less amino acids as well as recombinant cells, and uses thereof.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: February 12, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Fackson Mwale, John Antoniou, Lisbet Haglund, Peter J. Roughley, Rahul Gawri, Laura M. Epure, Michael P. Grant
  • Patent number: 10197590
    Abstract: Considerations for selecting capacitive sensors include accuracy, repeatability, long-term stability, ease of calibration, resistance to chemical and physical contaminants, size, packaging, integration options with other sensors and/or electronics, and cost effectiveness. It is beneficial if such sensors are amenable to above-IC integration with associated control/readout circuitry for reduced parasitics and reduced footprint through area sharing. The inventors have established a combined Lorentz force based magnetometer and accelerometer MEMS sensor exploiting a low temperature, above-IC-compatible fabrication process operating without requiring vacuum packaging.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: February 5, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Mourad El-Gamal, Mohannad Elsayed, Paul-Vahe Cicek, Frederic Nabki
  • Patent number: 10193578
    Abstract: Modern communication systems must cope with varying channel conditions and differing throughput constraints. Polar codes despite being the first error-correcting codes with an explicit construction to achieve the symmetric capacity of memoryless channels are not currently employed against other older coding protocols such as low-density parity check (LDPC) codes as their performance at short/moderate lengths has been inferior and their decoding algorithm is serial leading to low decoding throughput. Accordingly techniques to address these issues are identified and disclosed including decoders that decode constituent codes without recursion and/or recognize classes of constituent directly decodable codes thereby increasing the decoder throughput. Flexible encoders and decoders supporting polar codes of any length up to a design maximum allow adaptive polar code systems responsive to communication link characteristics, performance, etc. while maximizing throughput.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: January 29, 2019
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING / MCGILL UNIVERSITY
    Inventors: Warren Gross, Gabi Sarkis, Pascal Giard, Camille Leroux