Patents Assigned to The United States of America as represented by the Administrator of NASA
  • Patent number: 10836137
    Abstract: Systems, methods, and devices of the various embodiments provide for the creation of holey graphene meshes (HGMs) and composite articles including HGMs. Various embodiments provide solvent-free methods for creating arrays of holes on holey graphene-based articles formed from dry compression (such as films, discs, pellets), thereby resulting in a HGM. In further embodiments, a HGM can used as part of a composite, such as by: 1) embedding a HGM into another matrix material such as carbon, polymer, metals, metal oxides, etc; and/or (2) the HGM serving as a matrix by filling the holes of the HGM or functionalizing the HGM body with another one or more materials. In various embodiments, HGM can also be made as a composite itself by creating holes on dry-compressed articles pre-embedded with one or more other materials.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: November 17, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Yi Lin, John W. Connell, John W. Hopkins, Brandon Moitoso
  • Patent number: 10829857
    Abstract: Gas is introduced into molten metal during an additive metal fabrication process and/or during a metal fusion process. The gas may comprise a process gas that flows through a tubular feed wire. The amount of process gas introduced can be controlled to vary the composition and/or material properties of metal deposits formed from a molten metal. Material properties such as yield strength, hardness, and fracture toughness can be increased or decreased in specific regions to provide material property gradients that closely correspond to expected requirements of components fabricated utilizing additive and/or fusion processes.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 10, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventor: Craig A. Brice
  • Patent number: 10825182
    Abstract: The present invention relates to a novel method and system for crater detection in planetary data based on marked point processes (MPP), effective for various object detection tasks in Earth observation, and for planetary image registration. The resulting spatial features are exploited for registration, together with fitness functions based on the MPP energy, on the mean directed Hausdorff distance, and on the mutual information. Two different methods—one based on birth-death processes and region-of-interest analysis, and the other based on graph cuts and decimated wavelets—are included within the present framework. Experimental results confirmed the effectiveness of the present invention in terms of crater detection performance and sub-pixel registration accuracy.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: November 3, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Jacqueline J. Le Moigne-Stewart, David Solarna, Gabriele Moser, Sebastiano Serpico, Alberto Gotelli
  • Patent number: 10815474
    Abstract: This system combines 3D printing technology with artificially modified cells for production of nonliving biomaterials. A 3D printer deposits a 3D array of bioengineered cells in the shape of a selected product. The cells are programmed to produce biomaterials in regulated amounts. The cell array deposits biomaterials onto a substrate. The cells and substrate are then removed, leaving a finished, nonliving product with microscale structure and precision.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: October 27, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Diana M. Gentry, Christopher E. Venter, Lynn J. Rothschild
  • Patent number: 10816463
    Abstract: A laser spectrometer includes a tunable laser assembly, a periodically-poled nonlinear optical crystal, with parallel polished input and output end faces, and a mechanism for controlling an entrance location of a pump input beam of the tunable laser on the input end face of the periodically-poled nonlinear optical crystal, such that the pump input beam traverses different grating periods of the periodically-poled nonlinear optical crystal.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: October 27, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Kenji Numata, Haris Riris, Stewart T. Wu, Xiaoli Sun
  • Patent number: 10816411
    Abstract: A microheater performs a self measurement of its own temperature. The microheater has an electrically resistive element which generates heat when a voltage has been applied across the resistive element. The resistive element has an electrical conductivity that is a function of its temperature. A measurement device is positioned within the microheater body and is configured to measure conductivity of the resistive element. An electronic processor, that may be incorporated into the microheater, controls brief interruption of the heating voltage and application of a lower voltage for measuring conductivity. The lower voltage is insufficient to increase the heat output of the microheater, and is applied for too short of a period to allow excessive cooling of the microheater. A microprocessor receives and processes the data obtained from measuring conductivity.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: October 27, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Meyya Meyyappan, Jin-Woo Han
  • Patent number: 10815013
    Abstract: A laminate has a composite coating on a substrate. The substrate is a polymeric substrate with a surface resistivity of 4×102 to 1×108?/?; or a textured substrate with surface features which are 100 nm to 10 microns high. The composite coating comprising a tie layer of a nickel-chromium alloy; a layer of a reflective metal; a layer of aluminum oxide; a layer of silicon oxide; and optionally a layer of indium tin oxide. The laminate has a solar absorbance at a wavelength of 0.25 microns to 2.5 microns of between 0.07 and 0.7; and the laminate has an IR emittance of 0.1 to 0.8. Solar absorbance and IR emittance of the laminate may be independently to control the ratio of solar absorbance to IR emittance. Solar absorbance may be adjusted by changing the surface resistance or degree of texturing on the substrate. IR emittance may be adjusted by changing oxide film thickness.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 27, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Mark M Hasegawa, Kenneth O'Connor, Alfred Wong, George M. Harris, Grant Smith
  • Patent number: 10815129
    Abstract: A rigid radiation reflector is fabricated from a powdered material transparent to light in a wavelength band extending from approximately 0.2 micrometers to at least 8 micrometers. The powdered material is dispersed in a liquid wherein the powdered material is at least 95% insoluble in the liquid. The resulting mixture is molded under pressure at room temperature and then sintered to generate a porous solid. The porous solid is cooled to room temperature. A surface of the porous solid is then coated with a light-reflecting metal.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: October 27, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Robert C. Youngquist, Tracy L. Gibson, Jan M. Surma, Jerry W. Buhrow, Mark A. Nurge
  • Patent number: 10819080
    Abstract: Coating-less nonplanar ring oscillator lasers are disclosed. Such lasers may eliminate the need for thin-film optical coatings from a laser cavity, solving the problem of optical damage to the coatings, and thus, providing a longer useful lifetime for the laser for space or terrestrial applications. Such lasers may be compact, ultra-stable, and highly reliable, enabling a low phase noise, single frequency laser in a compact package. Such lasers may be used in CW and/or in pulse mode.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: October 27, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Kenji Numata, Anthony Yu
  • Patent number: 10808079
    Abstract: Various embodiments provide random copolyimides that may possess the mechanical, thermal, chemical and optical properties associated with polyimides yet achieve a low energy surface. In various embodiments, the copolyimides may be prepared using a minor amounts of a diamino terminated fluorinated alkyl ether oligomer and a diamino terminated siloxane oligomer. The various embodiments include processes for making the copolyimides containing fluorine and silicon surface modifying agents and anisotropic coatings and articles of manufacture from them. Thus the coatings and articles of manufacture made with the copolyimides of the various embodiments may be characterized as having an anisotropic fluorine and silicon composition and low surface energy.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 20, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: John W. Connell, Christopher J. Wohl, Jr., Jereme R. Doss, Allison M. Crow, William T. Kim, Yi Lin
  • Patent number: 10802107
    Abstract: A method for recognizing infrasound events includes detecting infrasonic source using one or more microphone arrays each having three equally-spaced infrasound microphones. The method includes identifying, via a data acquisition system (DAS), a level of coherence of the detected infrasonic acoustic signals from each possible pair of microphones and recognizing the infrasound source using the coherence and a time history of the detected signals. The method may include estimating source properties via the DAS, including a magnitude, azimuth angle, and elevation angle, and executing a control action in response to the estimated properties. A system includes the array and the DAS. The array may be positioned above or below ground, and may be connected to one or more aircraft in some embodiments.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: October 13, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Qamar A. Shams, John W. Stoughton, Allan J. Zuckerwar
  • Publication number: 20200316721
    Abstract: Methods and systems for the laser surface treatment on stainless steel alloys and nickel alloys may include a computer may be programmed to set a laser path corresponding to a predetermined geometric pattern. A laser may be coupled to the computer and apply a pulsed laser beam to a contact surface of the substrate along the predefined geometric pattern. The pulsed laser beam may have a laser power between 0.1 W and 100 W, single pulse fluence 1 mJ/mm2 and 1025 mJ/mm2 and a laser speed between 25.4 cm/s and 127 cm/s. The laser may generate an open pore oxide layer on the contact surface of the substrate with a thickness of 0.1-1 ?m, an open pore distance of 0.05-1 ?m. The open pore oxide layer may have a topography corresponding to the predefined geometric pattern. The topography may contain open pore structures and promote adhesive bond performance.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 8, 2020
    Applicants: UNITED TECHNOLOGIES CORPORATION, UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: XIAOMEI FANG, Christopher J. Hertel, John D. Riehl, John W. Connell, Frank L. Palmieri, John W. Hopkins
  • Patent number: 10793298
    Abstract: Disclosed is a berthing system to receive a client module, including a plurality of berthing posts, a plurality of clamping mechanisms each mounted to a respective berthing post, the plurality of clamping mechanisms movable along a berthing post to clamp a received module, wherein the plurality of clamping mechanisms are configured to assert a radial force upon the received module, wherein the plurality of clamping mechanisms each include a rotary clamping jaw that includes drawdown portion and a radial contact portion.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: October 6, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Kelvin R. Garcia, Thomas J. Hanyok, Matthew S. Ashmore
  • Patent number: 10796585
    Abstract: A method and device provide a rotorcraft operator with real-time information concerning acoustic radiation on a region of the ground in the vicinity of the rotorcraft. A noise radiation model and at least one measured flight variable determine a high noise region on the ground that is bounded by a predefined noise level threshold. The method/device may include a display showing the high noise region and the position of the rotorcraft on a map. The rotorcraft operator may also be provided with real-time Blade-Vortex Interaction (“BVI”) avoidance guidance while the rotorcraft is in flight.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: October 6, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventor: Eric Greenwood
  • Patent number: 10787242
    Abstract: There is provided an aerodynamic control apparatus for an air vehicle comprising a flap system including a first spanwise flap segment to be arranged on a first side of an air vehicle, a second spanwise flap segment to be arranged on the first side of the air vehicle, and a controller to actuate the first spanwise flap segment to a first flap deflection and the second spanwise flap segment to a second flap deflection, wherein the first spanwise flap segment at the first flap deflection and the second spanwise flap segment at the second flap deflection form a piecewise continuous trailing edge.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: September 29, 2020
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventor: Nhan T. Nguyen
  • Patent number: 10787575
    Abstract: A black molecular adsorber coating (MAC-B) composition is provided that exhibits adsorptive capabilities and reduces the effects of optical path degradation and system performance degradation when formed into a black coating having low reflectivity. The coating can be used in stray light control applications or within light paths between optical systems to absorb light and reduce the effects of optical path degradation. The coating can be used in vacuum systems to adsorb molecular contaminants and to reduce vacuum pressure levels. The coating composition can be sprayed onto interior surfaces, such as optical cavities of cameras, telescopes, lasers, baffles, detectors systems, and electronics boxes to control performance degradation due to outgassed molecular contaminants.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: September 29, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Nithin S. Abraham, Mark M. Hasegawa, Sharon A. Straka, John C. Petro
  • Patent number: 10781517
    Abstract: Modification of pigments may be performed using atomic layer deposition (ALD) to provide custom-tailored thermal protection characteristics. More specifically, ALD may be used to encapsulate pigment particles with controlled thicknesses of a thermal protective layer, such as VO2. ALD may allow films to be theoretically grown one atom at a time, providing angstrom-level thickness control.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 22, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventor: Vivek H. Dwivedi
  • Patent number: 10778355
    Abstract: A frequency division multiplexing system includes a processor, a first digital to analog converter (DAC) for generating a local oscillator signal, a second DAC for generating a chirp signal, and a plurality of electronic elements, each having a transmit signal mixer for combining the local oscillator and chirp signals, and a transceiver configured to transmit the combined local oscillator and chirp signals, where the processor may be configured to operate the first DAC and second DAC to vary frequencies of the local oscillator and chirp signals such that the combination of the local oscillator and chirp signals results in a constant center frequency with a varying phase.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: September 15, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Rafael Rincon, Dee-Pong Daniel Lu
  • Patent number: 10775679
    Abstract: The present invention relates to a coherent optical transistor device including: first and second coherent optical laser beams from a laser source; wherein the first beam has a relatively higher power/energy than the second beam of at least 2:1; and a permanent sub-wavelength structure in a unitary section into which the first and second beams enter, which permanently modifies a refractive index in both transverse and longitudinal directions; wherein every transverse spatial grating Fourier component in the sub-wavelength structure is phase-shifted by 90 degrees (pi/2) from each of corresponding Fourier components of a spatial interference of the first and second optical beams; and a refractive index profile in the unitary structure in the longitudinal direction is permanently modified, leading to a complete transfer of energy from the first to the second optical beam, resulting in a gain mechanism that results in an amplified signal beam and an inverted signal beam.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: September 15, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventor: Michael A. Krainak
  • Patent number: 10775537
    Abstract: A remote sensing system includes a primary beam configured to carry orbital angular momentum and characterized by a mode number (m), with the mode number (m) being a non-zero integer. The primary beam is configured to be directed at a target. A photon sieve is configured to receive a secondary beam emanating from the target. The secondary beam at least partially includes a portion of the primary beam. The photon sieve includes a plurality of holes forming one or more respective spiral patterns. The quantity of the respective spiral patterns in the photon sieve corresponds to the mode number (m) of the primary beam. The plurality of holes may be configured to have a minimum diameter such that the minimum diameter is greater than a predefined wavelength of the primary beam. The respective spiral patterns extend between a respective first hole and a respective final hole.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 15, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: David G. MacDonnell, Wenbo Sun, Yongxiang Hu