Patents Assigned to The University of Florida Research Foundation, Inc.
  • Patent number: 11978023
    Abstract: The present disclosure describes various embodiments of systems, apparatuses, and methods for drone-based administration of remotely located devices. One such method comprises deploying an unmanned aerial vehicle from a base station, wherein the base station assigns a maintenance order to the unmanned aerial vehicle for servicing of a remote device, traveling, by the unmanned aerial vehicle, to the location of the remote device, authenticating, by the unmanned aerial vehicle, a valid identification of the remote device; upon the remote device being authenticated by the unmanned aerial vehicle, servicing the remote device by at least charging a power supply of the remote device and transferring contents of a device log to the unmanned aerial vehicle; and after completing the servicing of the remote device; returning to the base station and transferring contents of the device log to the base station.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: May 7, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Swarup Bhunia, Prabuddha Chakraborty, Reiner Dizon, Parker Difuntorum, Christopher Vega, Patanjali Sristi Lakshmiprasanna Sriramakumara
  • Patent number: 11975219
    Abstract: A particle portal imaging (PPI) system and method are provided that can be used to provide a “beam's eye view” of a patient's anatomy as a charged particle beam is delivered to a target region of the patient's body. The PPI system is capable of performing real-time image acquisition and in-situ dose monitoring using at least exit neutrons generated within the patient. The PPI system can perform charged particle treatment (PT) monitoring to monitor the particle beam being used for PT.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: May 7, 2024
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC
    Inventors: Sanjiv Singh Samant, Jyothier Nimmagadda, James Edward Baciak, Thomas S. S. Samant, Andreas Jon Enqvist
  • Patent number: 11963936
    Abstract: Disclosed herein is a composition comprising a biologically active agent; a base oil; an additional oil that is soluble in the base oil with a partition coefficient for the biologically active molecule that is at least twice that of the base oil; where the base oil and the additional oil are present in the composition in an amount effective to reduce the amount of the biologically active agent in an aqueous phase to less than 80 wt % of the amount with just the base oil present in an otherwise identical composition at the same total oil loading; a non-ionic surfactant; and water.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 23, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Anuj Chauhan, Robert A. Damitz
  • Patent number: 11964422
    Abstract: Described herein are various embodiments of a valve that may be opened and closed using a thixotropic or “stress yield” material, or other material that temporarily changes phase upon application of energy to the material. More particularly, some embodiments may include a valve that is opened and closed using a granular gel that is a temporary phase change material.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: April 23, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Joshua Muse, Meghan Hughes, Carl David Crane, Thomas Ettor Angelini, Kyle D. Schulze, Tapomoy Bhattacharjee, Wallace Gregory Sawyer, Curtis Taylor
  • Patent number: 11952327
    Abstract: In one aspect, the disclosure relates to methods for preparation of terpene and terpene-like molecules. In a further aspect, the disclosure relates to the products of the disclosed methods, i.e., terpene and terpene-like molecules prepared using the disclosed methods. Intermediates for the synthesis of a wide variety of terpenoids are ?-allyl Knoevenagel adducts or quasi ?-allyl Knoevenagel adducts are disclosed. In various aspects, methods of preparing terpenoids through these intermediates are disclosed. The methods can comprise ?-alkylation of an allylic electrophile followed by ring-closure metathesis to a polycyclic terpenoid structure. In a further aspect, the disclosure pertains to terpenoid frameworks, and compounds prepared via disclosed oxidation and substitution reactions on the disclosed terpenoid frameworks. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 9, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: Alexander James Grenning
  • Patent number: 11954201
    Abstract: The present disclosure describes systems, apparatuses, and methods for obfuscation-based intellectual property (IP) watermark labeling. One such method comprises identifying, by one or more computing processors, a specific net within an integrated circuit design that is likely to be used in a malicious attack; and adding additional nets to the integrated circuit design that add additional logic states to a finite state machine present in the integrated circuit design. The additional logic states comprise watermarking states for performing authentication of the integrated circuit design, in which a watermark digest can be captured upon application of secret key inputs to the additional nets. Other methods, systems, and apparatuses are also presented.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: April 9, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Swarup Bhunia, Tamzidul Hoque, Abhishek Anil Nair, Patanjali Sristi Lakshmiprasanna Sriramakumara
  • Patent number: 11949163
    Abstract: The present disclosure describes various embodiments of systems, apparatuses, and methods for implementing an array antenna having a combination of ferromagnetic and nonferromagnetic conductors in alternating multilayers. One such antenna device comprises an array of patch antennas on a substrate, wherein the patch antennas are formed of a combination of ferromagnetic and nonferromagnetic conductors in alternating multilayers; and a microstrip feeding line coupled to the array of patch antennas. Other systems, apparatuses, and methods are also presented.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: April 2, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Yong Kyu Yoon, Renuka Bowrothu, Haein Kim, Seahee Hwangbo
  • Patent number: 11944462
    Abstract: Various examples are provided for accurate heart rate measurement. In one example, a method includes determining a respiratory rate (RR) and respiration displacement from radar-measured cardiorespiratory motion data; adjusting notch depths of a harmonics comb notch digital filter (HCNDF) based upon the respiration displacement; generating filtered cardiorespiratory data by filtering the radar-measured cardiorespiratory motion data with the HCNDF; and identifying a heart rate (HR) from the filtered cardiorespiratory data. In another example, a system includes radar circuitry configured to receive a cardiorespiratory motion signal reflected from a monitored subject; and signal processing circuitry configured to determine a respiration displacement based upon the cardiorespiratory motion signal; adjust notch depths of a HCNDF based upon the respiration displacement; filter the cardiorespiratory motion data with the HCNDF; and identifying a heart rate (HR) from the filtered cardiorespiratory data.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: April 2, 2024
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Jenshan Lin, Linda Frances Hayward, Tien-yu Haung
  • Patent number: 11941515
    Abstract: Disclosed are various embodiments of memristive devices comprising a number of nodes. Memristive fibers are used to form conductive and memristive paths in the devices. Each memristive fiber may couple one or more nodes to one or more other nodes. In one case, a memristive device includes a first node, a second node, and a memristive fiber. The memristive fiber includes a conductive core and a memristive shell surrounding at least a portion of the conductive core along at least a portion of the memristive fiber. The memristive fiber couples the first node to the second node through a portion of the memristive shell and at least a portion of the conductive core.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: March 26, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Juan Claudio Nino, Jack Kendall
  • Patent number: 11932878
    Abstract: Provided herein are genetically engineered cells containing one or more modulated metabolic genes, where the expression of the modulated metabolic gene(s) can be greater than that of an unmodified control. Also provided herein are methods of making the genetically engineered cells using synergistic activation mediator CRISPR-Cas9. Further provided herein are high throughput assays that can employ the genetically engineered cells provided herein.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 19, 2024
    Assignees: University of Florida Research Foundation, Inc., The Research Foundation for the State University of New York
    Inventors: Christopher Dillon Vulpe, Amin Sobh, David Michael Faulkner, Abderrahmane Tagmount, Michael Fasullo
  • Patent number: 11926700
    Abstract: Biorenewable polyesters and polyester copolymers derived from camphoric acid, aromatic dicarboxylic acid and aliphatic diols and methods of making those copolyesters and articles comprising copolyesters are disclosed. The disclosed biorenewable copolyesters may can have a Mn of from about 5,000 Da to about 500,000 Da. Also disclosed are preparation methods of various monomers e.g., cis-1,4-anhydroerythritol and bis(2-hydroxyethyl) camphorate. The disclosed biorenewable polyesters and polyester copolymers can be used for production of various articles utilizing a conventional polyesters or polyester copolymers, to replace, in part or in whole, a conventional non-biorenewable polyesters or polyester copolymers.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: March 12, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Stephen A. Miller, Olivier Nsengiyumva
  • Patent number: 11918421
    Abstract: Described herein are loupes shields. The shields can be easily attached to the loupes. The loupes shield is composed of a single filter that blocks harmful light. Additionally, the loupes shield includes a connector that permits the loupes shield to be attached to the loupes lens or housing that holds the loupes lens. The loupes shields described are useful in applications where it is desirable to protect the user from being exposed to damaging light. The loupes shields are useful in dental applications such as, for example, dental restorations, where light cure is required to cure the resin applied to a tooth during a dental restoration.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 5, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Hind Sattar Hussein, Nader Farhan Abdulhameed
  • Patent number: 11912999
    Abstract: An aptamer-N-heterocyclic-carbene metal complex conjugate (aptamer-NHCM conjugate) or an aptamer-bis-N-heterocyclic-carbene metal complex conjugate (aptamer-bis-NHCM conjugate) includes an aptamer coupled through a hydrolytically stable bond to an N-heterocyclic-carbene metal complex (NHCM) or a bis-N-heterocyclic-carbene metal complex (bis-NHCM). The aptamer-NHCM conjugate is prepared where the chosen aptamer displays selective binding to a cell specific receptor, such that the cytotoxic NHCM can be directed specifically to cells responsible for a target disease (e.g., a specific cancer type). A method of preparing the aptamer-N-heterocyclic-carbene metal complex conjugate involves installing a coupling group to an N-heterocyclic-carbene metal complex that can specifically bond with a functional group on an aptamer; the bond, covalent or non-covalent, is stable hydrolytically in the absence of an environment that promotes intentional cleavage of the bond.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: February 27, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Adam S. Veige, Mary E. Garner, Weijia Niu
  • Patent number: 11912704
    Abstract: In one aspect, the disclosure relates to methods for preparation of intermediates useful for the preparation of aryl-cycloheptene scaffolds. In a further aspect, the disclosed methods pertain to the preparation of compounds comprising an aryl-cycloheptene structure. The disclosed methods utilize abundant starting materials and simple reaction sequences that can be used to modularly and scalably assemble common such cores. In various aspects, the present disclosure pertains to compounds prepared using the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: February 27, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Alexander James Grenning, Ehsan Fereyduni
  • Patent number: 11911278
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to TMJ implantation materials and implants (e.g., temporomandibular joint (TMJ) disc), methods of making TMJ implantation materials and implants, methods of forming a TMJ implantation material or an implant, and the like.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: February 27, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: Peter S. McFetridge
  • Patent number: 11884629
    Abstract: Provided are embodiments of para-substituted 1,1-dialkyl-4-phenylpiperazin-1-ium iodides advantageous for modulating inflammation that have been synthesized and their electrophysiology activities for ?9, ?9?10, and ?7 nAChRs compared. The para position contained alkyl or aryl amides, or heterocyclic isosteres for the amide, and the alkyl groups were varied at the ammonium piperazine nitrogen to see if compensatory changes in size at this position of the molecule impacted function. The compounds were characterized with two-electrode voltage-clamp measurements on Xenopus oocytes expressing nAChRs. General, the compounds were more potent for ?9-containing receptors than for ?7, and the majority were either full or strong partial agonists for ?9-containing nAChR.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: January 30, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Nicole Alana Horenstein, Roger Lee Papke, Hina Andleeb
  • Patent number: 11888327
    Abstract: The present disclosure provides wireless power transfer systems and methods. One such system includes a transmitter comprising a transmitter coil coupled to a power source and a transmitter metasurface slab positioned on a front side of the transmitter coil that is configured to amplify and focus a magnetic field generated by the transmitter coil towards a receiver in a non-contact manner. In such a system, the receiver comprises a receiver coil coupled to a load and a receiver metasurface slab positioned on a front side of the receiver coil configured to amplify and focus a magnetic field generated by the transmitter coil towards the receiver coil in a non-contact manner. Other systems and methods are also provided.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 30, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Yong Kyu Yoon, Woosol Lee
  • Patent number: 11879119
    Abstract: Disclosed herein is a bioreactor system that allows perfusive flow through a porous support medium enabling 3D growth of biological samples. In some embodiments, the system comprises a sample well filled with a three-dimensional (3D) cell growth medium. The system can further comprises a liquid medium reservoir fluidly connected to the sample well by a first filter material. The system can further comprises a medium collection chamber fluidly connected to the sample well by a second filter material. The system can further comprise an absorbant material that creates an osmotic pressure gradient to produce perfusive flow. In some embodiments, osmotic pressure draws fluid from the liquid medium reservoir, through the first filter material, into the sample well where it permeates the three-dimensional cell growth medium, through the second filter material, and finally into the medium collection chamber.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 23, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Thomas Ettor Angelini, Tapomoy Bhattacharjee, Wallace Gregory Sawyer, Cameron Morley
  • Patent number: 11865172
    Abstract: The subject invention pertains to isolated influenza virus that is capable of infecting canids and causing respiratory disease in the canid. The subject invention also pertains to compositions and methods for inducing an immune response against an influenza virus of the present invention. The subject invention also pertains to compositions and methods for identifying a virus of the invention and diagnosing infection of an animal with a virus of the invention.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 9, 2024
    Assignees: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., CORNELL RESEARCH FOUNDATION, INC., THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, CENTERS FOR DISEASE CONTROL AND PREVENTION
    Inventors: Patti Cynthia Crawford, Paul J. Gibbs, Edward J. Dubovi, Ruben Omar Donis, Jacqueline Katz, Alexander I. Klimov, Nallakannu P. Lakshmanan, Melissa Anne Lum, Daniel Ghislena Emiel Goovaerts, Mark William Mellencamp, Nancy J. Cox, William L. Castleman
  • Patent number: 11865498
    Abstract: Embodiments of the present disclosure provide for systems for removing contaminants from a leachate, methods of removing contaminants from a leachate, and the like.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: January 9, 2024
    Assignees: University of Florida Research Foundation, Inc., Alachua County
    Inventors: Timothy Townsend, Ronald Bishop, David Wood, James Lloyd