Patents Assigned to The University of Florida Research Foundation, Inc.
  • Patent number: 11781206
    Abstract: Disclosed herein is a composite comprising a metal alloy matrix; where the metal alloy matrix comprises aluminum in an amount greater than 50 atomic percent; a first metal and a second metal; where the first metal is different from the second metal; and where the metal alloy matrix comprises a low temperature melting phase and a high temperature melting phase; where the low temperature melting phase melts at a temperature that is lower than the high temperature melting phase; and a contracting constituent; where the contracting constituent exerts a compressive force on the metal alloy matrix at a temperature between a melting point of the low temperature melting phase and a melting point of the high temperature melting phase or below the melting points of the high and low temperature melting phases.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: October 10, 2023
    Assignees: University of Florida Research Foundation, Inc., United States Of America As Represented By The Administrator of NASA
    Inventors: Michele Viola Manuel, Charles Robert Fisher, Maria Clara Wright
  • Patent number: 11781199
    Abstract: Disclosed herein is a method comprising disposing a container containing a metal and/or ferromagnetic solid and abrasive particles in a static magnetic field; where the container is surrounded by an induction coil; activating the induction coil with an electrical current, to heat up the metallic or ferromagnetic solid to form a fluid; generating sonic energy to produce acoustic cavitation and abrasion between the abrasive particles and the container; and producing nanoparticles that comprise elements from the container, the metal and/or the ferromagnetic solid and the abrasive particles. Disclosed herein too is a composition comprising first metal or a first ceramic; and particles comprising carbides and/or nitrides dispersed therein. Disclosed herein too is a composition comprising nanoparticles comprising chromium carbide, iron carbide, nickel carbide, ?-Fe and magnesium nitride.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: October 10, 2023
    Assignees: University of Florida Research Foundation, Inc., UT-BATTELLE, LLC
    Inventors: Michele Viola Manuel, Hunter B. Henderson, Orlando Rios, Gerard M. Ludtka
  • Patent number: 11781993
    Abstract: Embodiments of the present disclosure provide for methods of detecting, sensors (e.g., chromogenic sensor), kits, compositions, and the like that related to or use tunable macroporous polymer. In an aspect, tunable macroporous materials as described herein can be used to determine the presence of a certain type(s) and quantity of liquid in a liquid mixture.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: October 10, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Sin Yen Leo, Peng Jiang, Tianwei Xie
  • Patent number: 11775693
    Abstract: The present disclosure describes systems and methods for test pattern generation to detect a hardware Trojan using delay-based analysis. One such method comprises determining a set of initial test patterns to activate the hardware Trojan within an integrated circuit design; and generating a set of succeeding test patterns to activate the hardware Trojan within the integrated circuit design using a reinforcement learning model. The set of initial test patterns can be applied as an input to the reinforcement learning model. Further, the reinforcement learning model can be trained with a stochastic learning scheme to increase a probability of triggering one or more rare nodes in the integrated circuit design and identify optimal test vectors to maximize delay-based side-channel sensitivity when the hardware Trojan is activated in the integrated circuit design. Other methods and systems are also provided.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: October 3, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Prabhat Kumar Mishra, Jennifer Marie Sheldon, Zhixin Pan
  • Patent number: 11771665
    Abstract: Compositions for treatment of cystinosis, products for administering eye drops, and products for storing contact lenses are provided. Compositions include solutions that can contain an effective amount of cysteamine to treat cystinosis, and an oil with a lower density than the solution. Also provided is a product including a bottle for containing a solution, the bottle being substantially free of O2. Also provided is a contact lens holder for storing one or more contact lenses in a solution, the holder including barrier layers reducing the amount of O2 entering the contact lens holder.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: October 3, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Anuj Chauhan, Phillip J. Dixon
  • Patent number: 11766823
    Abstract: A method or apparatus for creating a three-dimensional tissue construct of a desired shape for repair or replacement of a portion of an organism. The method may comprise injecting at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The apparatus may comprise an injector configured to inject at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The first material may comprise a yield stress material, which may be a material exhibiting Herschel-Bulkley behavior. The tissue construct may have a smallest feature size of ten micrometers or less.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: September 26, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Thomas Ettor Angelini, Wallace Gregory Sawyer, Kyle Gene Rowe, Tapomoy Bhattacharjee, Alberto Fernandez-Nieves, Ya-Wen Chang, Samantha M. Marquez
  • Patent number: 11770399
    Abstract: Various examples are provided related to software and hardware architectures that enable lightweight and trust-aware routing. In one example, among others, a method for trust-aware routing includes calculating trust values to represent how much a node can be trusted to route packets through its router. Each node can store the trust values of routers that are one hop and two hops away from it, which represent direct trust and delegated trust, respectively. When a router receives a packet, the router can update trust values and forward the packet to the next hop.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: September 26, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Thelijjagoda S N Charles, Prabhat Kumar Mishra
  • Patent number: 11752236
    Abstract: In one aspect, the disclosure relates to protective, anti-bacterial coatings for medical implants and methods of making the same. Also disclosed herein are methods for improving the anti-bacterial properties of a medical device coated with silicon carbide (SiC) or titanium nitride (TiN). Further disclosed herein are medical devices including an anti-microbial layer prepared by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: September 12, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Josephine F. Esquivel-Upshaw, Arthur E. Clark, Fan Ren, Samira Afonso Camargo
  • Patent number: 11757198
    Abstract: Embodiments of the present disclosure integrate magnetoelectric nanowire arrays within antenna assemblies to form ultra-compact antennas. An exemplary nanowire antenna array device comprises a first electrode positioned across a second electrode, wherein an electrode gap separates the first electrode and the second electrode; and a magnetoelectric nanowire connected to the first electrode and the second electrode across the electrode gap without substrate clamping, wherein the nanowire antenna array device receives or transmits electromagnetic waves through the magnetoelectric effect.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: September 12, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jennifer S. Andrew, Matthew Bauer, David P. Arnold
  • Patent number: 11753538
    Abstract: An organic microgel system as support material for 3D printing of soft materials such as silicone and methods for manufacturing and using the organic microgel system are disclosed. In some embodiments, the organic microgel system comprises a plurality of microgel particles formed by blending a di-block copolymer and a tri-block copolymer in an organic solvent. The organic microgel system may allow high precision 3D printing of silicone objects with complex shapes.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: September 12, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Thomas Ettor Angelini, Brent S. Sumerlin, Christopher S. O'Bryan, Wallace Gregory Sawyer, Tapomoy Bhattacharjee
  • Patent number: 11742570
    Abstract: Various examples are provided for meander line (ML) slots, which can be used for mutual coupling reduction. In one example, an antenna array includes first and second patch antenna elements disposed on a first side of a substrate, the first and second patch antenna elements separated by a gap. The antenna array can include a meander line (ML) slot formed in a ground plane disposed on a second side of the substrate. A plurality of ML slots can be aligned with the gap between the first and second patch antenna elements. In another example, a method includes forming first and second antenna elements on a first side of a substrate and forming a ML slot in a ground plane disposed on a second side of the substrate aligned with a gap between the first and second antenna elements.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: August 29, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Yong-Kyu Yoon, Seahee Hwangbo
  • Patent number: 11730971
    Abstract: Embodiments of the present disclosure provide for magnetic particle conjugates, methods of making the magnetic particle conjugates, methods of using magnetic particle conjugates, and the like.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: August 22, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Jon P. Dobson, Josephine Allen
  • Patent number: 11731934
    Abstract: The instant invention describes hydrazide-containing compounds having therapeutic activity, and methods of treating disorders such as cancer, tumors and cell proliferation related disorders, or affect cell differentiation, dedifferentiation or transdifferentiation.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: August 22, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Daiqing Liao, William R. Roush, Ryan L. Stowe
  • Patent number: 11731197
    Abstract: In one aspect, the present disclosure pertains to methods of making various noble metal nanoprisms, e.g., gold nanoprisms. In various aspects, the methods can comprise incubating, under dark conditions, a growth solution comprising: (a) a plurality of gold seed structures; (b) a gold precursor, and (c) a photocatalytic intermediary, such that during the incubating step multiply-twinned gold seed structures in the growth solution are preferentially enlarged. The disclosed methods can comprise separating the multiply-twinned gold seed structures from the growth solution based upon the size of the gold seed structures to produce an enriched growth solution. In some aspects, the methods comprise irradiating the enriched growth solution to produce the gold nanoprisms. In some aspects, the disclosed nanoprisms comprise silver.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: August 22, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Wei David Wei, Yueming Zhai
  • Patent number: 11725068
    Abstract: Disclosed are saturated cyclic monopolymers derived from hexyne, octyne, nonyne, pentadecyne and saturated cyclic copolymers derived from acetylene and a second alkyne monomer that is hexyne, octyne, nonyne, or pentadecyne.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: August 15, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: Adam S. Veige
  • Patent number: 11720654
    Abstract: The present disclosure provides systems and methods for timed unlocking and locking of hardware intellectual properties obfuscation. One such method includes determining whether received key inputs match a functional key sequence of an integrated circuit or a test key sequence of the integrated circuit; permanently enabling operation of the integrated circuit responsive to the received key inputs being determined to be a functional key sequence for permanently enabling operation of the integrated circuit; temporarily enabling operation of the integrated circuit responsive to the received key inputs being determined to be the test key sequence for temporarily enabling operation of the integrated circuit to perform testing of the functionality and disable thereafter; and locking sequential logic and combinational logic of the integrated circuit if the received key inputs are determined to not be either the functional key sequence or the test key sequence. Other systems and methods are also provided.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: August 8, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Swarup Bhunia, Abdulrahman Alaql, Aritra Dasgupta, Md Moshiur Rahman
  • Publication number: 20230227452
    Abstract: The invention can provide compounds, analogs of blebbistatin, effective and selective inhibitors of nonmuscle myosin II relative to cardiac myosin II.
    Type: Application
    Filed: February 15, 2023
    Publication date: July 20, 2023
    Applicant: The University of Florida Research Foundation, Inc.
    Inventors: Courtney Anne MILLER, Patrick Robert GRIFFIN, Theodore Mark KAMENECKA, Gavin Rumbaugh, Matthew Surman, Steve Young, Steven Duddy, Laszlo Radnai
  • Patent number: 11705255
    Abstract: Disclosed herein is a method comprising disposing a first particle in a reactor; the first particle being a magnetic particle or a particle that can be influenced by a magnetic field, an electric field or a combination of an electrical field and a magnetic field; fluidizing the first particle in the reactor; applying a uniform magnetic field, a uniform electrical field or a combination of a uniform magnetic field and uniform electrical field to the reactor; elevating the temperature of the reactor; and fusing the first particles to form a monolithic solid.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: July 18, 2023
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: James F. Klausner, Renwei Mei, Ayyoub Mehdizadeh Momen, Kyle Allen
  • Patent number: 11705527
    Abstract: Embodiments of the present disclosure provide for methods of making substrates having an (AR) antireflective layer, substrates having an antireflective layer, devices including a substrate having an antireflective layer, and the like. The AR layer can have a total specular reflection of less than 10% at a wavelength of about 400-800 nm, and a height of about 500-1000 nm.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 18, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Peng Jiang, Zhuxiao Gu, Ruwen Tan
  • Patent number: 11689089
    Abstract: Wireless power transmission (WPT) systems are provided. For example, the WPT system can use one or more power transmitting coils and a receiver for electromagnetically coupled wireless power transfer. The electrodynamic receiver can be in the form of an electrodynamic transducer where a magnet is allowed to oscillate near a receiving coil to induce a voltage in the receiving coil, a piezoelectric transducer where the magnet causes a vibrating structure with a piezoelectric layer to move, an electrostatic transducer where movement of the magnet causes a capacitor plate to move, or a combination thereof. An alternating magnetic field from the transmitting coil(s) excites the magnet in the receiver into mechanical resonance. The vibrating magnet then functions similar to an energy harvester to induce voltage/current on an internal coil, piezoelectric material, or variable capacitor.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: June 27, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: David Patrick Arnold, Shuo Cheng, Vinod Reddy Challa