Patents Assigned to The University of Maryland
  • Patent number: 11590202
    Abstract: The present invention provides compositions and methods for selective inhibition of the classical or non-classical LT?R-NF?B signaling pathway. In some embodiments, the compositions and methods of the present invention are useful for treating or preventing tissue graft rejection, inflammation, contact hypersensitivity, and cancer by decreasing cell motility.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: February 28, 2023
    Assignee: University of Maryland, Baltimore
    Inventors: Jonathan Bromberg, Wenji Piao, Yanbao Xiong
  • Patent number: 11584828
    Abstract: Polyphosphazenes polyelectrolytes. The polyphosphazenes can be prepared by substituting pendant groups (e.g., ionic groups or pendant groups that can form ionic groups) onto a reactive macromolecular precursor for example, by reaction between the reactive chlorine atoms on the backbone of poly(dichlorophosphazene) and appropriate organic nucleophiles. In certain examples, one or more charged pendant groups of a polyphosphazene is/are further modified to introduce desired counterions, which can be hydrophobic counterions. The polyphosphazenes can activate distinct Toll-Like Receptors (TLRs) and can be used in methods of stimulating an immune response.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: February 21, 2023
    Assignee: University of Maryland, College Park
    Inventors: Alexander K. Andrianov, Thomas R. Fuerst, Peter Fusco, Alexander Marin
  • Patent number: 11585770
    Abstract: A method of using the transverse relaxation rate (R2) of solvent NMR signal to noninvasively assess alum-containing products such as vaccines. This technique can be used for quality control in vaccine manufacturing (e.g., fill-finish step) to determine the evenness of alum filling level as well as extent of alum particle sedimentation in filled and sealed products.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: February 21, 2023
    Assignees: UNIVERSITY OF MARYLAND, BALTIMORE, ACCESS TO ADVANCED HEALTH INSTITUTE
    Inventors: Yihua (Bruce) Yu, Marc Taraban, Christopher Fox
  • Patent number: 11583216
    Abstract: Embodiments of the invention are broadly drawn to methods for determining an optimum dose of an antiarrhythmic drug, for example sotalol. In particular, the method involves titrating the dose of the drug gradually to determine the optimum plasma concentration for a patient, whether the patient has normal or abnormal renal function.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: February 21, 2023
    Assignee: University of Maryland, Baltimore
    Inventors: Vijay Ivaturi, Jogarao Gobburu
  • Publication number: 20230047272
    Abstract: Disclosed is a system and method for the placement of elongate medical members within a patients body using coaptive ultrasound. In a particularly preferred embodiment, a flexible tube includes a first balloon at a distal end of the tube, and a second balloon at the distal end of the tube and positioned within the first balloon. The first and second balloons are inflatable to form one or more echogenic windows between them, which echogenic window may be detected from within a patient's body by an ultrasound probe that is external to the patient's body. Detection of such echogenic window is used to identify an acceptable location on the patient's body at which to insert a guidewire configured to receive an elongate medical member without damage to surrounding patient tissues or organs.
    Type: Application
    Filed: February 28, 2022
    Publication date: February 16, 2023
    Applicant: University of Maryland, Baltimore
    Inventor: Steven TROPELLO
  • Patent number: 11578894
    Abstract: Solar thermal devices are formed from a block of wood, where the natural cell lumens of the wood form an interconnected network that transports fluid or material therein. The block of wood can be modified to increase absorption of solar radiation. Combining the solar absorption effects with the natural transport network can be used for various applications. In some embodiments, heating of the modified block of wood by insolation can be used to evaporate a fluid, for example, evaporating water for extraction, distillation, or desalination. In other embodiments, heating of the modified block of wood by insolation can be used to change transport properties of a material to allow it to be transported in the interconnected network, for example, heating crude oil to adsorb the oil within the block of wood.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: February 14, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Mingwei Zhu, Yiju Li, Chaoji Chen, Tian Li, He Liu, Amy Gong, Yudi Kuang
  • Patent number: 11581573
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy for lithium ion migration in the solid state lithium ion electrolytes is 0.5 eV or less and room temperature conductivities are greater than 100.5 S/cm. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: February 14, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yifei Mo, Xingfeng He, Chen Ling, Ying Zhang
  • Patent number: 11578681
    Abstract: A pulse combustor system for operating pulse combustors in anti-phase. The pulse combustor system includes two pulse combustors connected at their combustion chambers by a connecting tube. Each of the pulse combustors has a fundamental oscillation mode and one or more additional oscillation modes when operated in isolation. The connecting tube has a length corresponding to ¼ of the fundamental oscillation mode wavelength.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: February 14, 2023
    Assignee: UNIVERSITY OF MARYLAND
    Inventor: Daanish Maqbool
  • Patent number: 11580283
    Abstract: The disclosure describes the implementation of automated techniques for optimizing quantum circuits of the size and type expected in quantum computations that outperform classical computers. The disclosure shows how to handle continuous gate parameters and report a collection of fast algorithms capable of optimizing large-scale-scale quantum circuits. For the suite of benchmarks considered, the techniques described obtain substantial reductions in gate counts. In particular, the techniques in this disclosure provide better optimization in significantly less time than previous approaches, while making minimal structural changes so as to preserve the basic layout of the underlying quantum algorithms.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 14, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, IonQ, Inc.
    Inventors: Yunseong Nam, Dmitri Maslov, Andrew Childs, Neil Julien Ross, Yuan Su
  • Patent number: 11581572
    Abstract: Solid-state lithium ion electrolytes of lithium metal nitride based compounds are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium metal nitride based composites are also provided.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: February 14, 2023
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Alexander Epstein, Chen Ling, Ying Zhang
  • Publication number: 20230038480
    Abstract: The presently disclosure relates to a system and method for bioelectronic communications. In certain embodiments the system comprises a bacterial cell or cells that comprise a genetic system for high-efficiency over-expression and secretion of recombinant proteins in bacteria. In certain embodiments, the system and method operate in a “pump-then-burst release” fashion to rapidly achieve high yields extracellularly. In certain embodiments, the system and method include quorum sensing-derived regulation, which may enable auto-induction of a protein's expression and secretion.
    Type: Application
    Filed: July 8, 2022
    Publication date: February 9, 2023
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Kristina STEPHENS, William E. BENTLEY, Jessica Lynn LIBA, Ryan MCKAY, Micaela EVERITT
  • Patent number: 11573477
    Abstract: Aspects of the present disclosure describe techniques for controlling coherent crosstalk errors that occur in multi-channel acousto-optic modulators (AOMs) by applying cancellation tones to reduce or eliminate the crosstalk errors. For example, a method and systems are described that include applying a first radio frequency (RF) tone to generate a first acoustic wave in a first channel of the multi-channel AOM, wherein a portion of the first acoustic wave interacts with a second channel to cause a crosstalk effect, and applying a second RF tone to generate a second acoustic wave in the second channel, wherein the second acoustic wave reduces or eliminates the crosstalk effect caused by the portion of the first acoustic wave.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: February 7, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Kristin Beck, Marko Cetina, Michael Goldman
  • Patent number: 11567950
    Abstract: A confidentiality preserving system and method for performing a rank-ordered search and retrieval of contents of a data collection. The system includes at least one computer system including a search and retrieval algorithm using term frequency and/or similar features for rank-ordering selective contents of the data collection, and enabling secure retrieval of the selective contents based on the rank-order. The search and retrieval algorithm includes a baseline algorithm, a partially server oriented algorithm, and/or a fully server oriented algorithm. The partially and/or fully server oriented algorithms use homomorphic and/or order preserving encryption for enabling search capability from a user other than an owner of the contents of the data collection. The confidentiality preserving method includes using term frequency for rank-ordering selective contents of the data collection, and retrieving the selective contents based on the rank-order.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Ashwin Swaminathan, Yinian Mao, Guan-Ming Su, Hongmei Gou, Avinash Varna, Shan He, Min Wu, Douglas W. Oard
  • Patent number: 11569527
    Abstract: The present disclosure describes various types of batteries, including lithium-ion batteries having an anode assembly comprising: an anode comprising a first porous ceramic matrix having pores; and a ceramic separator layer affixed directly or indirectly to the anode; a cathode; an anode-side current collector contacting the anode; and anode active material comprising lithium located within the pores or cathode active material located within the cathode; wherein, the ceramic separator layer is located between the anode and the cathode, no electrically conductive coating on the pores contacts the separator layer, and in a fully charged state, lithium active material in the anode does not contact the separator layer. Also disclosed are methods of making and methods of using such batteries.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: January 31, 2023
    Assignee: University of Maryland, College Park
    Inventors: Liangbing Hu, Eric D. Wachsman, Boyang Liu, Lei Zhang, Shaomao Xu, Dennis McOwen, Chunpeng Yang
  • Publication number: 20230026844
    Abstract: Provided herein is an inhibitor for decreasing cellular levels X-box-binding protein 1 variant 1 (Xv1) in a cancer cell and a method for decreasing Xv1 in a cancer cell by contacting the cancer cell with this inhibitor. Also provided is a pharmaceutical composition for treating a cancer and a method for treating a cancer by administering this composition. In addition there is provided a kit for targeting Xv1 with at least one Xv1 inhibitor, at least one pharmaceutically acceptable carrier and a means for detecting the Xv1 protein or mRNA.
    Type: Application
    Filed: December 12, 2020
    Publication date: January 26, 2023
    Applicant: University of Maryland, Baltimore
    Inventors: Shengyun FANG, Yongwang ZHONG
  • Patent number: 11559803
    Abstract: The present invention describes an integrated apparatus that enables identification of migratory cells directly from a specimen. The apparatus only requires a small number of cells to perform an assay and includes novel topographic features which can reliably differentiate between migratory and non-migratory cell populations in a sample. Both the spontaneous and chemotactic migration of cancer cells may be measured to distinguish between subpopulations within a tumor sample. The migratory cells identified using the apparatus and methods of the present invention may be separated and further analyzed to distinguish factors promoting metastasis within the population. Cells in the apparatus can be treated with chemotherapeutic or other agents to determine drug strategies to most strongly inhibit migration. The use of optically transparent materials in some embodiments allows a wide range of imaging techniques to be used for in situ imaging of migratory and non-migratory cells in the apparatus.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: January 24, 2023
    Assignees: UNIVERSITY OF MARYLAND, BALTIMORE, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Konstantinos Konstantopoulos, Colin Dowlin Paul, Alfredo Quinones-Hinojosa, Aikaterini Kontrogianni-Konstantopoulos
  • Patent number: 11561180
    Abstract: The present invention provides for metallic structures comprising a sulfhydryl or amino-terminated hydrophilic coating to provide a layer of hydrophilic character on the surface of the metallic structures thereby allowing the use of low volumes of aqueous solvents of fluorophores that have the ability to “spread out” across the surfaces of the metallic structures and to provide for a more uniform surface coating of fluorophores attached to or near the metallic structures.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: January 24, 2023
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY
    Inventor: Chris D. Geddes
  • Patent number: 11562277
    Abstract: The disclosure describes various aspects of techniques for using global interactions in efficient quantum circuit constructions. More specifically, this disclosure describes ways to use a global entangling operator to efficiently implement circuitry common to a selection of important quantum algorithms. The circuits may be constructed with global Ising entangling gates (e.g., global Mølmer-Sørenson gates or GMS gates) and arbitrary addressable single-qubit gates. Examples of the types of circuits that can be implemented include stabilizer circuits, Toffoli-4 gates, Toffoli-n gates, quantum Fourier transformation (QTF) circuits, and quantum Fourier adder (QFA) circuits. In certain instances, the use of global operations can substantially improve the entangling gate count.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: January 24, 2023
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Yunseong Nam, Dmitri Maslov
  • Patent number: 11560412
    Abstract: The present invention provides nucleic acids encoding a fusion protein comprising a nucleotide sequence encoding GRIM-19 or a biologically active fragment or derivative thereof and a nucleotide sequence encoding a protein transduction domain. Proteins encoded by the nucleic acids, pharmaceutical compositions and methods of treatment are also provided. The invention also provides viral vectors comprising GRIM-19 or a biologically active fragment or derivative thereof, pharmaceutical compositions and methods of treatment using the same.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: January 24, 2023
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Dhan Kalvakolanu, Shreeram Nallar
  • Publication number: 20230020256
    Abstract: The present invention provides an anode composition comprising (i) a core material (10) comprising a microparticle; (ii) a lithium alloy of said microparticle (14) on a surface of said core material (10); and (iii) a solid electrolyte interface (“SEI”) comprising (a) a LiF and (b) a polymer. The microparticle comprises Si, Al, Bi, Sn, Zn, or a mixture thereof. The present invention also relates to an electrolyte comprising a high lithium fluoride salt concentration in a low reduction potential solvent that is used produce the solid electrolyte interface comprising LiF and a polymer. The anode composition of the invention has an initial coulombic efficiency of at least 90%, a cycling coulombic efficiency of at least 99%, or both.
    Type: Application
    Filed: February 19, 2021
    Publication date: January 19, 2023
    Applicant: University of Maryland, College Park
    Inventors: Chunsheng WANG, Ji CHEN, Xiulin FAN