Patents Assigned to The University of Memphis Research Foundation
  • Patent number: 9248441
    Abstract: Metal nanoparticles entrapped or encapsulated in a polymer nanocapsule disclosed. Methods of making and using the metal nanoparticles entrapped or encapsulated in a polymer nanocapsule are also disclosed.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 2, 2016
    Assignee: University of Memphis Research Foundation
    Inventors: Eugene Pinkhassik, Sergey Shamakov
  • Publication number: 20160000924
    Abstract: The invention provides improved methods for generating biodegradable chitosan compositions, and therapeutic methods of using such compositions to deliver therapeutic agents.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 7, 2016
    Applicant: University of Memphis Research Foundation
    Inventors: James Keaton Smith, Ashley C. Parker, Jessica A. Jennings, Benjamin T. Reves, Warren O. Haggard
  • Patent number: 9183927
    Abstract: Various aspects of the invention provide memory devices, methods of storing and reading data, and silver/molecular-layer/metal (SMM) junctions. One aspect of the invention provides a memory device including a plurality of SMM junctions and an electrical structure configured to permit application of electricity across one or more of the plurality of SMM junctions. Another aspect of the invention provides a method of storing data on a memory device including a plurality of SMM junctions. The method includes applying electrical energy across a subset of the SMM junctions to switch the junction to a more conductive state. Another aspect of the invention provides an SMM junction including a silver layer, a copper layer, and a molecular layer positioned between the silver layer and the copper layer.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: November 10, 2015
    Assignee: The University of Memphis Research Foundation
    Inventor: Lam H. Yu
  • Patent number: 9158841
    Abstract: One aspect of the invention provides a method of evaluating semantic differences between a first item in a first semantic space and a second item in a second semantic space. The method includes: calculating a first ordered list of N nearest neighbors of the first item within the first semantic space; calculating a second ordered list of N nearest neighbors of the second item within the second semantic space; and computing a plurality of similarity measures between the first n nearest neighbors of the first item and the first n nearest neighbors of the second item, wherein n and N are positive integers and 1?n?N.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 13, 2015
    Assignee: The University of Memphis Research Foundation
    Inventors: Xiangen Hu, Zhiqiang Cai, Arthur C. Graesser, Scotty Craig
  • Publication number: 20150224236
    Abstract: The invention provides compositions featuring chitosan and methods for using such compositions for the local delivery of biologically active agents to an open fracture, complex wound or other site of infection. Advantageously, the degradation and drug elution profiles of the chitosan compositions can be tailored to the needs of particular patients at the point of care (e.g., in a surgical suite, clinic, physician's office, or other clinical setting).
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Applicant: University of Memphis Research Foundation
    Inventors: Warren O. Haggard, Scott P. Noel, Joel D. Bumgardner
  • Patent number: 8993540
    Abstract: The invention provides compositions featuring chitosan and methods for using such compositions for the local delivery of biologically active agents to an open fracture, complex wound or other site of infection. Advantageously, the degradation and drug elution profiles of the chitosan compositions can be tailored to the needs of particular patients at the point of care (e.g., in a surgical suite, clinic, physician's office, or other clinical setting).
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 31, 2015
    Assignee: University of Memphis Research Foundation
    Inventors: Warren O. Haggard, Scott P. Noel, Joel D. Bumgardner
  • Patent number: 8969093
    Abstract: Constant calibration methods and apparatuses for analytical devices that are located in remote positions in order to allow for reliable and automated measurements of various contaminants within water or other liquid samples. The proposed calibration systems allow for certain methods to measure total amounts of certain trihalomethane and haloacetic acid contaminants, at least, in drinking water samples from such remote locations, through the utilization of a standard addition introduction of known concentrations of such contaminant compounds within target samples, followed by separation through a capillary membrane sampling device and measurement of such different contaminants via flow injection analysis (FIA). In such a manner, the on-line, remote system provides the necessary reliability for a water utility or like entity on which to base any further needed water treatment activities without having to perform such measurements in a distinct lab setting.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 3, 2015
    Assignee: University of Memphis Research Foundation
    Inventors: Gary Lynn Emmert, Paul S. Simone, Jr.
  • Publication number: 20150037818
    Abstract: Magnetic-optical iron oxide-gold core-shell nanoparticles are disclosed. Methods for making and using the nanoparticles are also disclosed.
    Type: Application
    Filed: July 1, 2014
    Publication date: February 5, 2015
    Applicant: UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION
    Inventors: Xiaohua Huang, Saheel Bhana
  • Patent number: 8780345
    Abstract: One aspect of the invention provides a spatially-selective disk including a plurality of holes arranged such that a matrix having a plurality of rows, each row having elements corresponding to a fraction of a pixel in a viewing window projected onto the disk that is backed by a hole at a distinct rotational position of the disk, has linearly independent rows. Another aspect of the invention provides a spectrometry device including: a disk having one or more holes; a motor configured to rotate the disk; one or more beam-shaping optics arranged to map one or more spectral components of radiation of interest onto a plurality of locations on the disk; and a receiver positioned to capture the one or more spectral components passing through the one or more holes as the disk is rotated.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 15, 2014
    Assignee: The University of Memphis Research Foundation
    Inventors: Orges Furxhi, Eddie L. Jacobs
  • Publication number: 20140124739
    Abstract: One aspect of the invention provides a self-assembled quantum computer including a plurality of quantum dots coupled by binding domains. Another aspect of the invention provides a method of self-assembling a quantum computer. The method includes: providing a plurality of quantum dots, each of the quantum dots coupled to between one and six binding domains; and facilitating coupling of the quantum dots through the binding domains, thereby self-assembling a quantum computer.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: THE UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION
    Inventor: Russell J. Deaton
  • Patent number: 8632186
    Abstract: One aspect of the invention provides a method for training a classification algorithm to detect a retinal pathology. The method includes: for a plurality of pseudo two-dimensional data sets of one-dimensional data points, each pseudo two-dimensional data point representing RNFL thickness values for a subject and corresponding index values for the data points: performing fractal analysis on the data set to calculate a plurality of fractal dimensions and calculating a plurality of slopes between each fractal dimension; combining the plurality of slopes for subjects labeled as pathologic into a pathologic data set; combining the plurality of slopes for subjects labeled as healthy into a healthy data set; and applying a linear discriminant function the pathologic data set and the healthy data set; thereby training a classification algorithm to detect the retinal pathology.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: January 21, 2014
    Assignees: University of Memphis Research Foundation, Southern College of Optometry
    Inventors: Khan M. Iftekharuddin, Young June Kim, Pinakin Gunvant Davey
  • Publication number: 20130329215
    Abstract: One aspect of the invention provides a nanothin polymer film having a plurality of pores defined solely by polymers of the polymer film. The pores have a uniform size. Another aspect of the invention provides a method of using a polymer film capsule with pores defined solely by the film described herein. The method includes: separating a mixture of chemicals having variable surface areas from the polymer film capsule by using a size exclusion column; collecting the polymer film capsule eluate from the size exclusion column; and determining a content of chemicals retained in the polymer film capsule by using UV/vis spectroscopy.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 12, 2013
    Applicant: University of Memphis Research Foundation
    Inventors: Evgueni Pinkhassik, Delia Cesara Danila, Larry Todd Banner
  • Publication number: 20130321642
    Abstract: The invention provides a spatially-selective reflective structure for the detection of submillimeter electromagnetic waves and systems and methods incorporating spatially-selective reflective structures. One aspect of the invention provides a spatially-selective reflective structure including a partially-conducting slab and a modulating reflector disk adjacent to the partially-conducting slab. The modulating reflector disk includes a plurality of modulations. Another aspect of the invention provides a submillimeter imaging device including submillimeter wave optics, a spatially-selective reflective structure located in the focal plane of the submillimeter wave optics, a submillimeter wave receiver positioned to capture waves reflected from the spatially-selective reflective structure, and a motor configured to rotate the spatially-selective reflective structure.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: The University of Memphis Research Foundation
    Inventors: Orges Furxhi, Eddie L. Jacobs, Thomas Layton
  • Publication number: 20130277229
    Abstract: The invention relates to novel metal complexes useful as catalysts in redox reactions (such as, hydrogen (H2) production). In particular, the invention provides novel transition metal (e.g., cobalt (Co) or nickel (Ni)) complexes, in which the transition metal is coupled with N,N-Bis(2-pyridinylmethyl)-2,2?-Bipyridine-6-methanamine (DPA-Bpy), 6?-((bis(pyridin-2-ylmethyl)amino)methyl)-N,N-dimethyl-2,2?-bipyridin-6-amine (DPA-ABpy), or a derivative thereof. The invention also relates to a method of producing H2 from an aqueous solution by using the metal complex as a catalyst. In certain embodiments, the invention provides a metal complex of the formulae as described herein.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 24, 2013
    Applicant: University of Memphis Research Foundation
    Inventor: University of Memphis Research Foundation
  • Publication number: 20130237408
    Abstract: Metal nanoparticles entrapped or encapsulated in a polymer nanocapsule disclosed. Methods of making and using the metal nanoparticles entrapped or encapsulated in a polymer nanocapsule are also disclosed.
    Type: Application
    Filed: August 31, 2011
    Publication date: September 12, 2013
    Applicant: UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION
    Inventors: Eugene Pinkhassik, Sergey Shamakov
  • Publication number: 20130229274
    Abstract: One aspect of the invention provides a theft detection system including one or more tag nodes configured to detect movement and transmit a beacon message and one or more anchor nodes configured to receive the beacon message from the one or more tag nodes and alert a third party of the beacon message. Another aspect of the invention provides a theft detection node including a power source, a motion detector, a transmitter, and a microcontroller in communication with the power source, the motion detector, and the transmitter. The microcontroller is configured to determine whether the node is being transported and if the node is being transported, instructing the transmitter to transmit a beacon message. Another aspect of the invention provides a theft detection method including detecting motion in a motor vehicle and transmitting a beacon message to an anchor node.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 5, 2013
    Applicants: University of Memphis Research Foundation, The Regents of the University of California, The Ohio State University
    Inventors: Santosh Kumar, Prasun Sinha, Kurt Plarre, Somnath Mitra, Zizhan Zheng, Santanu Guha, Animikh Ghosh, Prabal Dutta, Bhagavathy Krishna
  • Patent number: 8519015
    Abstract: A method of preparing nanothin polymer films having uniform and selectively sized pores utilizing pore forming templates. Lipids and pore forming templates are dissolved into a first solution. The solvent is removed thereby creating a lipid bilayer with pore forming templates dispersed throughout. The bilayer is hydrated and monomers and crosslinkers are added to create a second solution. A nanothin film with pore forming templates is created through polymerization of said second solution. The pore forming templates are dissolved into a third solution by addition of a chemical in which the pore forming template is soluble, but the lipid bilayer is insoluble. This third solution is separated from the mixture leaving a nanothin polymer film with pores of a uniform thickness and surface area.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: August 27, 2013
    Assignee: University of Memphis Research Foundation
    Inventors: Evgueni Pinkhassik, Delia Cesara Danila, Larry Todd Banner
  • Patent number: 8508592
    Abstract: The invention provides a spatially-selective reflective structure for the detection of submillimeter electromagnetic waves and systems and methods incorporating spatially-selective reflective structures. One aspect of the invention provides a spatially-selective reflective structure including a partially-conducting slab and a modulating reflector disk adjacent to the partially-conducting slab. The modulating reflector disk includes a plurality of modulations. Another aspect of the invention provides a submillimeter imaging device including submillimeter wave optics, a spatially-selective reflective structure located in the focal plane of the submillimeter wave optics, a submillimeter wave receiver positioned to capture waves reflected from the spatially-selective reflective structure, and a motor configured to rotate the spatially-selective reflective structure.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 13, 2013
    Assignee: The University of Memphis Research Foundation
    Inventors: Orges Furxhi, Eddie L. Jacobs, Thomas Layton
  • Patent number: 8497371
    Abstract: Novel and optimized classes of pipemidic acid derivative compounds that exhibit effective inhibition of autotaxin enzymes are provided. Such classes of compounds exhibit exhibit reactivity with autotaxin to ultimately reduce the size of the reactive sites thereon to prevent conversion of lysophosphatidyl choline to lysophophatidic acid. Furthermore, such compounds can be incorporated within delivery forms for human ingestion. As such, these compounds accord an excellent manner of potentially reducing generation of certain cancers attributable to the presence of naturally occurring autotaxin within the human body. Methods of inactivating autotaxin to certain degrees therewith such compounds are encompassed within invention as well.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: July 30, 2013
    Assignee: University of Memphis Research Foundation
    Inventors: Abby Louise Parrill-Baker, Daniel Lee Baker, Adrienne Hoeglund
  • Publication number: 20130138665
    Abstract: One aspect of the invention provides a method of evaluating semantic differences between a first item in a first semantic space and a second item in a second semantic space. Thee method includes: calculating a first ordered list of N nearest neighbors of the first item within the first semantic space; calculating a second ordered list of N nearest neighbors of the second item within the second semantic space; and computing a plurality of similarity measures between the first n nearest neighbors of the first item and the first n nearest neighbors of the second item, wherein n and N are positive integers and 1?n?N.
    Type: Application
    Filed: June 14, 2012
    Publication date: May 30, 2013
    Applicant: THE UNIVERSITY OF MEMPHIS RESEARCH FOUNDATION
    Inventors: Xiangen Hu, Zhiqiang Cai, Arthur C. Graesser, Scotty Craig