Patents Assigned to The University of Michigan
  • Publication number: 20200367828
    Abstract: An ingestible electronic capsule for the collection of samples along a gastric intestinal tract and methods relating thereto are provided. The ingestible electronic capsule includes a housing and a cap that form an interior chamber. The cap includes a sampling port and one or more sample collection chambers are disposed within the interior chamber. A motor is also disposed within the interior chamber and is configured to rotate one of the cap and the one or more sample collection chambers so to align one or the one or more sample collection chambers and the sampling port of the cap so to allow for sample collection. A microcontroller is also disposed within the interior chamber and is in communication with at least the motor. The microcontroller is configured to control the selective alignment of the sampling port and one of the one or more sample collection chambers and induce gastric intestinal fluid sampling.
    Type: Application
    Filed: January 2, 2019
    Publication date: November 26, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Duxin SUN, Yogesh B. GIANCHANDANI, Tao LI, Jinhui LIAO, Qisen CHENG, Johnathan LEWIS, Ryan MEREDITH, Jeremy FELTON
  • Patent number: 10847805
    Abstract: An article for forming an electrochemical device is disclosed. The article comprises a metallic current collector clad with an ion conducting solid-electrolyte material such that intimate contact between the current collector and the ion conducting solid-electrolyte material is made. A lithium metal anode can be formed in situ between the current collector clad and the ion conducting solid-electrolyte material from lithium ions contained within a cathode material that is placed in contact with the ion conducting solid-electrolyte material. A bipolar electrochemical cell can be constructed from the article.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: November 24, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jeffrey Sakamoto, Travis Thompson, Nathan Taylor
  • Patent number: 10845284
    Abstract: A droplet-based microfluidic rheometer system and method of use for real-time viscosity monitoring of blood coagulation is disclosed. Droplets of blood samples are generated in a microfluidic rheometer, and the size of the droplets is highly correlated to the sample viscosity. The size of the droplets can be determined optically using an inverted light microscope and a camera or using electrodes. The microfluidic rheometer systems provides viscosity measurements in less than a second and consumes less than 1?{umlaut over (?)} blood or plasma over an hour period. The viscosity measurements may be displayed and transmitted to the Internet or cloud storage.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: November 24, 2020
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Yunzi Li, Kevin R. Ward, Mark A. Burns
  • Patent number: 10842493
    Abstract: An everter device to facilitate preparation of ends of arterial segments for end-to-end microvascular anastomosis. The device includes structure that provides sufficient support to prevent unwanted buckling of arterial tissue. The everter device offsets the tendency of the arterial tissue wall to recover its natural shape and fall off securement posts or pins of a coupler ring. The structure may be in the form of an intraluminal catheter balloon. Alternately, the structure may be in the form of a plunger. Alternately, the structure may be in the form of a radially expanding member provided on a shaft. The device further has a contoured surface on an everter end to evert a free end of arterial tissue over a coupler ring, and to cause the posts or pins of the coupler ring to pierce through the everted arterial tissue. The everter end is provided with one or more openings therein, such as a circumferential slot, to receive the posts or pins of the coupler ring.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 24, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jeffrey Stephen Plott, Paul S. Cederna, Kirsten Boelkins, Jeffrey H. Kozlow, Jonathan William Zwier, Krishna Mahajan, Kelsey L. Luibrand, Martin Sisolak, Sebastian Kwon, Aaron S. Farberg, Adeyiza Momoh, Albert J. Shih
  • Patent number: 10842791
    Abstract: This invention is in the field of medicinal chemistry. In particular, the invention relates to a new class of small-molecules having a quinazoline structure or a quinoline structure which function as dual inhibitors of EGFR proteins and PI3K proteins, and their use as therapeutics for the treatment of cancer and other diseases.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: November 24, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Christopher Emil Whitehead, Judith S. Leopold
  • Patent number: 10845324
    Abstract: Electrochemical sensors for the detection of select analytes are provided. The electrochemical sensors include a barrier layer having a substantially uniformed thickness disposed between a sensing layer and an ion exchange membrane. The barrier layer includes a two-dimensional nanomaterial. The barrier layer has a thickness of less than or equal to about 1 nm. The sensing layer has a thickness of less than or equal to about 10 nm. The sensing layer generates ions in response to select analytes. The barrier layer allows the generation ions to pass therethrough and travel into the ion exchange membrane. The barrier layer acts as a physical barrier to contaminants and larger molecules.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 24, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Girish Kulkarni, Xudong Fan, Zhaohui Zhong, Ayush Pandey, Wenzhe Zang
  • Publication number: 20200365751
    Abstract: Angle insensitive/angle-robust colored filter assemblies are provided for use with a photovoltaic device to create a decorative and colored photovoltaic device assembly. The filter may be passive or active with an ultrathin reflective layer of high refractive index material, like amorphous silicon (a-Si). A passive filter may have transparent first and second pairs of dielectric materials surrounding the ultrathin reflective layer. An active filter may have transparent first and second electrodes and first and second doped hole/electron transport layer surrounding the ultrathin reflective layer. The filter can transmit a portion and reflect a portion of the electromagnetic spectrum to generate a reflected color output with minimal angle dependence. Angle insensitive colored photovoltaic device assemblies having high power conversion efficiencies (e.g., ?18%) including a passive or active colored reflective filter and a photovoltaic device are also contemplated.
    Type: Application
    Filed: November 9, 2018
    Publication date: November 19, 2020
    Applicants: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, TOYOTA MOTOR CORPORATION, TOYOTA MOTOR CORPORATION
    Inventors: Lingjie Jay GUO, Chengang JI, Taizo MASUDA, Yuki KUDO
  • Patent number: 10841740
    Abstract: An in-car phone localization scheme is proposed to determine, in real time, the locations of smartphones inside a moving car, with the goal of preventing smartphone-distracted driving. The localization system operates on commodity smartphones, and does not require any additional special/customized sensors or devices to be installed inside the car, making its deployment easy and attractive to users and carmakers. Even when a phone is moved from one location to another inside a moving car, the system will detect this movement, record the sensor data, and estimate the phone's destination location. The system captures the trajectory of each phone movement, the change of magnetic field, and the RSSI readings from the car Bluetooth transceiver, and then estimates the phone's destination location by matching the trajectory with the variation of magnetic field and the Bluetooth RSSI readings.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: November 17, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kang G. Shin, Chun-Yu Chen
  • Patent number: 10837492
    Abstract: An axially compliant rolling bearing for precision motion stages having a stage, at least one bearing member slidably disposed along a rail, and a compliant joint interconnecting the at least one roller bearing to the stage. The compliant joint is sufficiently compliant to permit movement of the stage in the axial direction while remaining stiff in other directions orthogonal to the axial direction.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: November 17, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Chinedum E. Okwudire, Deokkyun D. Yoon, Xin Dong
  • Patent number: 10836383
    Abstract: A vehicle has a steering mechanism coupled to a wheel of the vehicle. The steering mechanism is adjustable to alter a vehicle trajectory. The vehicle also comprises a collision imminent steering (CIS) control system. The collision imminent steering control system includes a controller in electrical communication with the steering mechanism and is configured to adjust a steering sequence of the steering mechanism to alter the vehicle trajectory when an obstacle is detected at a distance from the vehicle less than a calculated safe braking distance. The controller simultaneously calculates a predicted optimal vehicle path around the obstacle and a steering sequence determined to follow the predicted optimal vehicle path around the obstacle using feedback received by the controller.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 17, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tulga Ersal, Jeffrey L. Stein, John Wurts
  • Patent number: 10840543
    Abstract: Disclosed are electrochemical devices, such as lithium battery electrodes, lithium ion conducting solid-state electrolytes, and solid-state lithium metal batteries including these electrodes and solid-state electrolytes. In one disclosed method, a solid state electrolyte material including a precursor layer having a first electronic conductivity is provided; and the precursor layer on the solid state electrolyte material is reduced to an interfacial layer having a second electronic conductivity greater than the first electronic conductivity.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: November 17, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Jeffrey Sakamoto, Travis Thompson, Nathan Taylor
  • Patent number: 10838065
    Abstract: Autonomous vehicles require precise localization to support safe and reliable operation. Current systems aim to localize in 6DOF based on observations from a combination of cameras and 3D LiDAR, matching against dense, 3D prior maps. These maps are quite large and complex, presenting both computational and physical challenges in terms of matching, storage, and retrieval. Most of the environments where vehicles operate in contain frequent and distinct vertical structure sufficient for 2D localization, while state-of-the-art IMUs can be used to recover roll and pitch. This disclosure introduces a fast method for constructing 2D maps summarizing the vertical structure in the environment and demonstrate that it can be used to localize accurately in vehicular and other applications.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 17, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Edwin Olson, Carl Kershaw
  • Patent number: 10829488
    Abstract: The present disclosure provides compounds having Formula I-A: and the pharmaceutically acceptable salts and solvates thereof, wherein A, X1, X2, X3 R1a, R1b E, and = are as defined as set forth in the specification. The present disclosure also provides compounds of Formula I-A for use to treat a disease, disorder, or condition responsive to Bcl-2 protein inhibition such as cancer.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: November 10, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Shaomeng Wang, Jianyong Chen
  • Patent number: 10829518
    Abstract: Provided herein are compositions including peptides, pharmaceutical preparations thereof, and methods of preventing photoreceptor death therewith and protecting of retinal cells, including, but not limited to, photoreceptors and retinal pigment epithelium, from Fas- or TRAIL-mediated apoptosis.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 10, 2020
    Assignees: ONL THERAPEUTICS. INC., THE REGENT OF THE UNIVERSITY OF MICHIGAN
    Inventors: Cagri G. Besirli, Alexander J. Bridges, John K. Freshley, William A. Hunke, Linda L. Johnson, Francis X. Smith, Ethan Sylvain, David N. Zacks
  • Patent number: 10814881
    Abstract: Some implementations of the disclosure are directed to reducing or removing time lag in vehicle velocity prediction by training a model for vehicle velocity prediction using labeled features that provide indication of a feature associated with a vehicle acceleration or deacceleration event. In one implementation, a method includes: receiving multiple time series datasets, each of the time series datasets including sensor data, GPS data, and vehicle state data collected over time; extracting features from each of the time series datasets that are indicative of a future velocity of a vehicle; labeling the extracted features of each of the time series datasets to indicate vehicle acceleration or deacceleration events; and after labeling the extracted features of each of the time series datasets, using at least a subset of the extracted and labeled time series datasets to train a machine learning model that predicts vehicle velocity some time into the future.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 27, 2020
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kuan X. Liu, Mike X. Huang, Ilya V. Kolmanovsky
  • Patent number: 10814348
    Abstract: A particle can be discretely ejected from a orifice.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: October 27, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, UNIVERSITY OF MICHIGAN
    Inventors: Anastasios John Hart, Justin Douglas Beroz, Homayoon Maghsoodi
  • Patent number: 10818965
    Abstract: Disclosed is a ceramic material having a formula of LiwAxM2Re3-yOz, wherein w is 5-7.5; wherein A is selected from B, Al, Ga, In, Zn, Cd, Y, Sc, Mg, Ca, Sr, Ba, and any combination thereof; wherein x is 0-2; wherein M is selected from Zr, Hf, Nb, Ta, Mo, W, Sn, Ge, Si, Sb, Se, Te, and any combination thereof; wherein Re is selected from lanthanide elements, actinide elements, and any combination thereof; wherein y is 0.01-0.75; wherein z is 10.875-13.125; and wherein the material has a garnet-type or garnet-like crystal structure. The ceramic garnet based material is ionically conducting and can be used as a solid state electrolyte for an electrochemical device such as a battery or supercapacitor.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: October 27, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Jeffrey Sakamoto, Travis Thompson
  • Patent number: 10815484
    Abstract: Provided herein are compositions and methods for treating cancer. In particular, provided herein are compositions, methods, and uses of inhibitors of THOR for treating cancer.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 27, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Arul Chinnaiyan, Yasuyuki Hosono
  • Publication number: 20200331165
    Abstract: Printable cementitious compositions for additive manufacturing are provided, that have a fresh state and a hardened state. In fresh state, the composition is flowable and extrudable in the additive manufacturing process. In the hardened state, the composition exhibits strain hardening. In one variation, the strain hardening is represented by a uniaxial tensile strength of ?about 2.5 MPa, a tensile strain capacity of ?about 1%, and a compressive strength at 100 hours of ?about 20 MPa. In other variations, the composition includes Portland cement, a calcium aluminate cement, a fine aggregate, water, a high range water reducing agent (HRWRA), and a polymeric fiber, as well as one or more optional components selected from: fly ash, silica flour, microsilica, attapulgite nanoclay, and/or hydroxypropylmethyl cellulose (HPMC). Methods of additive manufacturing with such compositions are also provided.
    Type: Application
    Filed: October 31, 2018
    Publication date: October 22, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Daniel G. SOLTAN, Victor C. LI
  • Patent number: 10812083
    Abstract: Sparse representation of information performs powerful feature extraction on high-dimensional data and is of interest for applications in signal processing, machine vision, object recognition, and neurobiology. Sparse coding is a mechanism by which biological neural systems can efficiently process complex sensory data while consuming very little power. Sparse coding algorithms in a bio-inspired approach can be implemented in a crossbar array of memristors (resistive memory devices). This network enables efficient implementation of pattern matching and lateral neuron inhibition, allowing input data to be sparsely encoded using neuron activities and stored dictionary elements. The reconstructed input can be obtained by performing a backward pass through the same crossbar matrix using the neuron activity vector as input. Different dictionary sets can be trained and stored in the same system, depending on the nature of the input signals.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: October 20, 2020
    Assignee: The Regents of the University of Michigan
    Inventors: Wei Lu, Fuxi Cai, Patrick Sheridan, Chao Du