Patents Assigned to The University of Michigan
  • Patent number: 11965112
    Abstract: An anti-icing coating is provided having low interfacial toughness (LIT) with ice. The anti-icing coating includes a polymer and a plasticizing agent. A thickness of the anti-icing coating may be less than or equal to about 100 micrometers (?m). Further, the anti-icing coating has an interfacial toughness (?ice) with ice of less than or equal to about 1 J/m2. Such an anti-icing coating may be applied to a substrate or surface of a device on which ice may form, such as aircraft, vehicles, marine vessels, outdoor equipment, snow or ice removal equipment, recreational equipment, wind turbines, telecommunications equipment, power lines, and the like. Methods of forming such anti-icing coatings are also provided.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: April 23, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Anish Tuteja, Michael Thouless, Kevin Golovin, Abhishek Dhyani
  • Patent number: 11960298
    Abstract: An integrated speed prediction framework based on historical traffic data mining and real-time V2I communications for CAVs. The present framework provides multi-horizon speed predictions with different fidelity over short and long horizons. The present multi-horizon speed prediction is integrated with an economic model predictive control (MPC) strategy for the battery thermal management (BTM) of connected and automated electric vehicles (EVs) as a case study. The simulation results over real-world urban driving cycles confirm the enhanced prediction performance of the present data mining strategy over long prediction horizons. Despite the uncertainty in long-range CAV speed predictions, the vehicle level simulation results show that 14% and 19% energy savings can be accumulated sequentially through eco-driving and BTM optimization (eco-cooling), respectively, when compared with normal-driving and conventional BTM strategy.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: April 16, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mohammad Reza Amini, Yiheng Feng, Zhen Yang, Ilya Kolmanovsky, Jing Sun
  • Patent number: 11958137
    Abstract: Due to geometric discontinuities introduced by welding and joining processes, stresses or strain cannot be calculated reliably calculated using modern analytical and computer methods as result of stress or strain singularity at joint locations, which leads to severe mesh sensitivity. Design and fatigue evaluation of these structures remain empirical. This disclosure addresses mesh insensitivity of stress/strain calculations for welded structures through a cut-plane traction stress method through a novel post processing of conventional finite element computation results, as well as provides a unified fatigue evaluation procedure for fatigue design and structural life evaluation for both low-cycle and high cycle fatigue regime subjected to either proportional or non-proportional multiaxial fatigue loading, as well as a simple and reliable method for treating spot welds.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: April 16, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Pingsha Dong, Xianjun Pei, Jifa Mei
  • Patent number: 11961621
    Abstract: A method includes receiving patient health data; determining a score using a trained machine learning model; determining a threshold value using an adaptive threshold tuning learning model; comparing the score to the threshold value; and generating an alarm. A computing system includes a processor; and a memory having stored thereon instructions that, when executed by the processor, cause the computing system to: receive patient health data; determine a score using a trained machine learning model; determine a threshold value using an adaptive threshold tuning learning model; compare the score to the threshold value; and generate an alarm. A non-transitory computer readable medium includes program instructions that when executed, cause a computer to: receive patient health data; determine a score using a trained machine learning model; determine a threshold value using an adaptive threshold tuning learning model; compare the score to the threshold value; and generate an alarm.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: April 16, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Christopher Elliot Gillies, Daniel Francis Taylor, Kevin R. Ward, Fadi Islim, Richard Medlin
  • Patent number: 11952679
    Abstract: Inverse temperature crystallization processes are provided to produce perovskite single crystals (PSCs), as well as surface passivation techniques for producing stabilizing the PSCs in the bulk region. Stable hybrid perovskite material include a bulk region comprising a single crystal perovskite material having a first bandgap and a smooth perovskite surface layer having a second bandgap greater than the first bandgap. Devices for detection and energy conversion are also contemplated, including for spectroscopic photon and elementary particle detection, such as radiation detectors. Crystallization chambers for forming the PSCs are also provided.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: April 9, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Suneel Joglekar, Lingjie Jay Guo, Mark David Hammig
  • Patent number: 11953459
    Abstract: A multi-functional sensor assembly includes an electrically non-conductive substrate defining at least a distal region, intermediary region, and proximal region that are each covered with electrically conductive traces. The proximal region is configured to be exposed to a media to be sensed and the distal and intermediary regions are configured to be protected from the media. The electrically conductive traces comprise at least electrical circuits to sense temperature and flow of the media and one or more electrodes to sense one or more of conductivity, oxidation reduction potential (ORP), and acidity (pH) of the media.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: April 9, 2024
    Assignees: MASCO CORPORATION, The Regents of the University of Michigan
    Inventors: Klaus Brondum, Mark Andrew Burns, Wen-Chi Lin, Michael McCague, Stephen Michael Stec, Brian N. Johnson, Garry Marty
  • Publication number: 20240111898
    Abstract: Cameras provide an easy-to-deploy and information-rich datastream for a wide range of ubiquitous sensing and health monitoring applications. However, their unrestricted operation often captures personally identifiable information (PII), preventing their use in privacy-sensitive settings, such as the home, workplace, and hospitals. This disclosure proposes pairing RGB and thermal imaging to robustly detect and remove PII (e.g., an individual's face, skin color, gender, body shape, etc.,) from images before they are stored or sent off the device. A dual camera prototype includes an onboard embedded GPU capable of performing real-time privacy sanitization tasks at 8FPS at under 5 W power consumption. Results show that in the most fail safe settings the system completely removes all PII.
    Type: Application
    Filed: September 11, 2023
    Publication date: April 4, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Yasha IRAVANTCHI, Alanson SAMPLE
  • Patent number: 11944614
    Abstract: The present disclosure provides compounds represented by Formula I: and the pharmaceutically acceptable salts and solvates thereof, wherein R1, R2, R3, and R4 are as defined as set forth in the specification. The present disclosure also provides compounds of Formula I for use to treat a condition or disorder responsive to LSD1 inhibition such as cancer.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 2, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Shaomeng Wang, Rohan Rej
  • Patent number: 11944626
    Abstract: This invention is in the field of medicinal chemistry. In particular, the invention relates to a new class of small-molecules having a thiopyrimidinone structure which function as inhibitors of ALDH protein, and their use as therapeutics for the treatment of cancer and other diseases.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: April 2, 2024
    Assignees: The Regents of the University of Michigan, Indiana University Research and Technology Corporation
    Inventors: Scott D. Larsen, Brandt C. Huddle, Kun Yang, Ronald Buckanovich, Thomas Hurley
  • Patent number: 11944532
    Abstract: The present disclosure relates to tissue engineering, and more particularly to a method for treating or repairing rotator cuff or other tendon tears or damage using scaffold-free, 3-dimensional engineered tendon constructs.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: April 2, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Lisa M. Larkin, Ellen M. Arruda, Michael Smietana, Asheesh Bedi, Stoyna Novakova
  • Patent number: 11949410
    Abstract: A system includes control circuitry configured to control an output signal. The control circuitry and/or various other sources of undesirable signal components may corrupt the control signal used by the control circuitry to correct the output signal. Conditioning circuitry may effect current-domain repair on the control circuitry by providing feedback-based conditioning actuation, including comparator overdrive, to the control circuitry.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: April 2, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Al-Thaddeus Avestruz, Xiaofan Cui
  • Patent number: 11938875
    Abstract: Systems and methods are provided for wireless power transfer in a vehicle. A wireless power transfer system can include a high-frequency alternating current (HFAC) inverter electrically coupled to the power source and a transmitter to wirelessly transmit a HFAC power signal to at least one device of a vehicle, such as sensors (e.g., LiDAR, GPS etc.) and cameras. The HFAC power signal provides wireless power and a data signal to the at least one device of a vehicle. The wireless power transfer system can eliminate the need for cabling and wires to provide power to the device. Wireless power transfer can include use or a data modulation circuit and a pulse current source to inject a pulse current to the HFAC power signal as superimposed data. System configurations can power a plurality of devices. Systems can includes a plurality of HFAC inverters and transmitters to power multiple sets of devices.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 26, 2024
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Yanghe Liu, Chungchih Chou, Hiroshi Ukegawa, Qunfang Wu, Mengqi Wang, Weiyang Zhou
  • Patent number: 11942148
    Abstract: Crossbar arrays perform analog vector-matrix multiplication naturally and provide a building block for modern computing systems. Specialized mixed-signal interface circuits are interfaced with the rows and columns of the crossbar arrays. During operation, the mixed-signal interface circuits provide high voltages for write operations and low voltages for read operations. This disclosure presents improved designs for the mixed-signal interface circuits which minimize the number of switches as well as the number level shifters.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: March 26, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Michael Flynn, Seungjong Lee, Seungheun Song, Justin Correll
  • Patent number: 11940798
    Abstract: An autonomous vehicle configured to autonomously pass a cyclist includes an imaging device and processing circuitry configured to receive information from the imaging device. Additionally, the processing circuitry of the autonomous vehicle is configured to identify a cyclist passing situation based on the information received from the imaging device, and plan a path of an autonomous vehicle based on the cyclist passing situation. The autonomous vehicle also includes a positioning system and the processing circuitry is further configured to receive information from the positioning system, determine if the cyclist passing situation is sufficiently identified, and identify the cyclist passing situation based on the information from the imaging device and the positioning system when the cyclist passing situation is not sufficiently identified based on the information received from the imaging device.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: March 26, 2024
    Assignees: TOYOTA RESEARCH INSTITUTE, INC., The Regents of the University of Michigan
    Inventors: Michael J. Delp, Ruijia Feng, Shan Bao
  • Patent number: 11944007
    Abstract: There is disclosed squaraine compounds of formula I: wherein each of Y1 and Y2 is independently chosen from an optionally substituted amino group and an optionally substituted aryl group. Also described are organic optoelectronic devices comprising a Donor-Acceptor heterojunction that is formed from one or more of the squaraine compounds. A method of making the disclosed device, which may include one or more sublimation step for depositing said squaraine compound, is also disclosed.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: March 26, 2024
    Assignees: The Regents of the University of Michigan, University of Southern California
    Inventors: Mark E. Thompson, Stephen R. Forrest, Guodan Wei, Siyi Wang, Lincoln Hall, Viacheslav V. Diev, Xin Xiao
  • Publication number: 20240097601
    Abstract: A tandem photovoltaic (PV) may include III-V semiconductors, silicon, a cathode electrode, an anode electrode, and a gold-to-gold metal bridge electrode. The semiconductors include p-typed and n-typed regions. To form a tandem PV structure, bottom and top PV cells can be independently fabricated. The bottom and the top PV cells are electrically connected by the gold-to-gold metal bridge interconnection, which is positioned between the bottom and the top PV cells. The metal bridge may be formed by cold-welding compression technique. This structure is compatible to the development of tandem PVs as well as thermophotovoltaic (TPV) cells.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 21, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. FORREST, Tobias BURGER, Andrej LENERT, Bosun ROY-LAYINDE, Jinun LIM
  • Publication number: 20240099036
    Abstract: Plasmonic nanostructures function as an antenna-reactor nanostructure to focus and convert light into thermal/chemical energy, and thus have significant potential for sustainable solar water disinfection. However, the insufficient energy harvesting efficiency resulting from inconsistent nano-features linked with arrangement and scaling is a persistent challenge. An integrated optofluidic fabrication method is presented to produce a high density integrative plasmonic dimer array to enhance solar water disinfection. The plasmonic dimer array is constructed by a combined fabrication of self-assembly monolayer method and block-co-polymer lithography approaches. This combination leads to a two-dimensional hexagonal array of dimer structures consisting of 1.3 nm nanogap. The uniformity and high density of the nanogaps in the plasmonic dimer array allows strong light focusing and a rapid and highly efficient harvesting of photothermal energy at visible and near-infrared region.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 21, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Somin Eunice LEE, Young Geun PARK
  • Patent number: 11931055
    Abstract: An actuated telescoping system for navigation within a vascular lumen and thrombectomy of a thrombus. The system includes a tubular catheter member having an open distal end defining a catheter lumen, a vacuum source, a rotational drive system, a flexible shaft having a channel coupled to the rotational drive system for rotational movement in response thereto, and an optional guidewire selectively inserted at least partially within the flexible shaft. The flexible shaft is at least partially disposed within the tubular catheter member configured for uncoupled rotational and translational motion therein and to optionally define a corkscrew motion in response to rotational driving force by the drive system that results in formation of hydrodynamic vortices within the catheter lumen.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: March 19, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Luis Emilio Savastano, Jeffrey Stephen Plott, Yang Liu, Yihao Zheng, Albert Jau-Min Shih
  • Patent number: 11933939
    Abstract: A metalens configured to shape the focus light into a flexibly designed pattern. The present teachings demonstrate the engineering of metalens with artificial focus pattern by creating line and ring-shaped focus as ‘drawing tools’. These metalens are fabricated through a single layer of silicon-based material through CMOS compatible nano fabrication process. The mechanism to generate artificial focus pattern can be applied to a plethora of future on-chip optical devices with applications ranging from beam engineering to next generation nano lithography.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: March 19, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Ya Sha Yi, Mao Ye
  • Patent number: 11935295
    Abstract: A method for processing a video stream includes obtaining frame data of a current frame of the video stream, determining frame difference data based on a comparison of the frame data of the current frame and scene cache data for a previous frame of the video stream, the scene cache data being stored in a scene cache for the video stream, determining, based on the frame difference data, regions of the video stream to be re-sampled at a higher resolution than the frame data, obtaining re-sampling data for the determined regions, updating the scene cache data based on the obtained frame data and the re-sampling data, and providing the re-sampling data to a processor to update an analysis scene cache for the video stream.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: March 19, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Robert P. Dick, Benjamin Scott Simpson, Ekdeep Singh Lubana, Pengyuan Huang