Patents Assigned to The University of Notre Dame
  • Patent number: 12140493
    Abstract: An optical system includes an incident beam divider structured to divide an incident beam into multiple derivative beams having varying polarizations. The optical system further includes a beam splitter structured to reflect and transmit the multiple derivative beams into different optical paths that have varying lengths. In the different optical paths, the multiple derivative beams experience reflection on one or more mirrors associated with each optical path. The one or more mirrors direct the multiple derivative beams back to the beam splitter, where the multiple derivative beams are then directed to a common detector. The common detector generates images of the multiple derivative beams, and a computing device analyzes the generated images to determine an error present in the images associated with the incident beam.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: November 12, 2024
    Assignees: University of Notre Dame du Lac, Northrop Grumman Systems Corporation
    Inventor: Justin Crepp
  • Patent number: 12134997
    Abstract: Systems and methods capable for use in the development of high-speed, shape-transitioning, inward-turning inlets for air-breathing hypersonic vehicles, and inlets formed thereby. The systems and methods preferably provide for designing high-speed inlets for air-breathing hypersonic vehicles, wherein unique solutions are defined in each osculating plane of the inlet. Such systems and methods optionally provide an optimization process for tuning the post throat-shock Mach number of the inlet, and/or designs a shock-capture surface using a parallel-streamlines methodology, and/or a double cowl-lip geometry to allow flow to spill overboard.
    Type: Grant
    Filed: August 31, 2023
    Date of Patent: November 5, 2024
    Assignees: Purdue Research Foundation, University of Notre Dame Du Lac
    Inventors: Mark Edward Noftz, Joseph Stephen Jewell, Andrew James Shuck, Jonathan Poggie, Andrew Nixon Bustard, Thomas James Juliano
  • Publication number: 20240343835
    Abstract: A strategy for site specific covalent modification of antibodies using a specialized targeting covalent heterobivalent ligand (cHBL), and corresponding design for a covalent heterobivalent inhibitor (cHBI) that can be used to prevent Immunoglobulin E (IgE) mediated allergic reactions triggered by drug molecules, according to one embodiment. These molecules contain four important components: (1) an IgE antigen binding site (ABS) ligand that can be a mimotope for the allergen protein, a small molecule, or a peptidomimetic, (2) an appropriate linker, which can be any flexible or rigid chemical linker, providing spacing between the ABS binder and the other moieties, (3) a nucleotide binding site (NBS) ligand, and (4) a reactive moiety to form a covalent link with an amino acid side chain of target IgE antibodies.
    Type: Application
    Filed: June 6, 2024
    Publication date: October 17, 2024
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Zihni Basar BILGICER, Peter Edward DEAK, Tanyel KIZILTEPE BILGICER, Michael William HANDLOGTEN, Jonathan Darryl ASHLEY
  • Patent number: 12110811
    Abstract: A gas turbine engine with a closed loop working fluid cycle.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: October 8, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: John R. Fagan, Joshua D. Cameron, Scott C. Morris
  • Patent number: 12080946
    Abstract: An electromagnetic antenna includes a channel configured to serve as a waveguide for electromagnetic radiation, a first and second feed disposed next to each other inside the channel at a first end thereof, the first and second feed being configured to radiate electromagnetic waves into the channel, an aperture lens disposed inside the channel near a second end thereof opposite to the first end, the aperture lens being configured to output collimated beams, a first focal lens disposed inside the channel adjacent to an outlet of the first feed, the first focal lens being configured to squint a beam radiated from the first feed toward a center of the aperture lens, and a second focal lens disposed inside the channel adjacent to an outlet of the second feed, the second focal lens being configured to squint a beam radiated from the second feed toward the center of the aperture lens.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: September 3, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Jonathan Chisum, Nicolas Garcia
  • Patent number: 12060473
    Abstract: Nano-composite films and methods for their fabrication. The nano-composite films include a polymer matrix (e.g., polyethylene, polypropylene, or the like) and a filler capable of exfoliation such as graphene or hexagonal boron nitride (e.g., TrGO). The filler provides reinforcement, increasing tensile strength, Young's modulus, or both for the resulting nano-composite film, as compared to what it would be without the filler. The nano-composite film may have a specific tensile strength that is greater than 1 GPa/g/cm3, a specific Young's modulus that is greater than 100 GPa/g/ccm3, or both. Tensile strength and modulus values of up to 3.7 GPa/g/cm3 and 125 GPa/g/cm3, respectively, have been demonstrated. The film may be formed by combining powdered filler and polymer matrix powder in a solvent (e.g., decalin), high-shear extruding the resulting solution to disentangle the polymer chains and exfoliate the filler, freezing the solution to form a solid film, and then drawing the film.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: August 13, 2024
    Assignee: University of Notre Dame Du Lac
    Inventors: Yunsong Pang, Tengfei Luo
  • Patent number: 12054466
    Abstract: Clostridium difficile infection (CDI) is a public health threat that results in 14,000 annual deaths in the United States. Challenges involve the production of CDI spores that can remain dormant for years and the production of toxins that damage the gut. Current therapies for CDI include vancomycin and metronidazole, but neither inhibits spore or toxin production. Thus, recurrence of infection occurs in 25% of patients and there are no antibiotics that are effective for multiple recurrences. We describe oxadiazoles with activity against C. difficile, including the highly virulent NAP1/027 strain with increased production of toxins A and B, as well as the additional binary toxin. Oxadiazole 2 is poorly absorbed, thus advantageously achieving high concentrations in the gut. The compound targets peptidoglycan synthesis and inhibits vegetative cells, spores, and toxin production.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 6, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Mayland Chang, Shahriar Mobashery, Derong Ding
  • Patent number: 12038767
    Abstract: A method for configuring a multiple autonomous drone mission includes displaying, a plurality of queries on a display of the computing device. The method further includes receiving, via a user interface, a plurality of inputs responsive to the plurality of queries. At least a first input of the plurality of inputs specifies a type of mission to be performed and at least a second input of the plurality of inputs specifies a geographical area in which a mission to be performed will be carried out. The method further includes automatically determining, based on the plurality of inputs, an initial location to move to for each of a plurality of drones available for implementing the mission. The method further includes automatically determining, based on the plurality of inputs, a series of tasks for each of the plurality of drones.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: July 16, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Jane Huang, Michael Vierhauser, Ankit Agrawal
  • Patent number: 12035134
    Abstract: Devices and techniques for authenticating wireless communications are disclosed. In some embodiments, the techniques can be performed by a network access point that includes a receiver to receive a wireless signal from a remote device. The network access point can also include a processor to calculate polarization data for the wireless signal and to determine whether the polarization data includes at least one characteristic that corresponds to a characteristic of a stored authenticated polarization signature.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: July 9, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Thomas G. Pratt, Joseph Lawrence Loof, Eric Jesse
  • Patent number: 12030867
    Abstract: Described are compounds of formula (I), based on an isoquinolin-1(2H)-one backbone, that function as Hsp90? selective inhibitors. Also described are pharmaceutical compositions thereof and methods of treating cancer by administering compounds of formula (I).
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 9, 2024
    Assignees: University of Notre Dame du Lac, University of Kansas
    Inventors: Brian Blagg, Sanket Mishra
  • Patent number: 12018092
    Abstract: The invention provides a strategy for site specific covalent modification of antibodies using a specialized targeting covalent heterobivalent ligand (cHBL), and corresponding design for a covalent heterobivalent inhibitor (cHBI) that can be used to prevent Immunoglobulin E (IgE) mediated allergic reactions triggered by drug molecules, according to one embodiment. These molecules contain four important components: (1) an IgE antigen binding site (ABS) ligand that can be a mimotope for the allergen protein, a small molecule, or a peptidomimetic, (2) an appropriate linker, which can be any flexible or rigid chemical linker, providing spacing between the ABS binder and the other moieties, (3) a nucleotide binding site (NBS) ligand, and (4) a reactive moiety to form a covalent link with an amino acid side chain of target IgE antibodies.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: June 25, 2024
    Assignee: University of Notre Dame Du Lac
    Inventors: Zihni Basar Bilgicer, Peter Edward Deak, Tanyel Kiziltepe Bilgicer, Michael William Handlogten, Jonathan Darryl Ashley
  • Patent number: 12004843
    Abstract: A frequency domain diffuse optical spectroscopy (FD-DOS) device and calibration method. The FD-DOS device includes a radio frequency signal generator, a driver, a light source, a silicon photomultiplier, an analog to digital conversion circuit, and an electronic processing circuit. The light source is configured to generate modulated light at a plurality of different wavelengths and modulation frequencies. The silicon photomultiplier is configured to generate analog detection signals indicative of detected optical signals. The analog to digital conversion circuit is configured to generate digital sample values from the analog detection signals. The electronic processing circuit is configured to determine absorption values and scattering values based on the digital sample values. The electronic processing circuit is also configured to determine concentration values based on the absorption values and the scattering values.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 11, 2024
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Roy A. Stillwell, Vincent James Kitsmiller, Thomas D. O'Sullivan
  • Patent number: 11962324
    Abstract: A modified version of the min-sum algorithm (“MSA”) which can lower the error floor performance of quantized LDPC decoders. A threshold attenuated min-sum algorithm (“TAMSA”) and/or threshold offset min-sum algorithm (“TOMSA”), which selectively attenuates or offsets a check node log-likelihood ratio (“LLR”) if the check node receives any variable node LLR with magnitude below a predetermined threshold, while allowing a check node LLR to reach the maximum quantizer level if all the variable node LLRs received by the check node have magnitude greater than the threshold. Embodiments of the present invention can provide desirable results even without knowledge of the location, type, or multiplicity of such objects and can be implemented with only a minor modification to existing decoder hardware.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: April 16, 2024
    Assignees: Arrowhead Center, Inc., University of Notre Dame du Lac
    Inventors: Homayoon Hatami, David G. Mitchell, Daniel Costello, Thomas Fuja
  • Patent number: 11940477
    Abstract: A method of determining electromagnetic exposure values for radiative compliance tests a transmitting device with multiple transmitters or antenna. The device transmits a first set of excitation signals that are chosen in advance. These signals are measured for their electromagnetic exposure values. A second set of excitation signals are then transmitted that are adaptively chosen based on result of a previous measurements of the first excitation signals. The second set of signals are also measured. From the measurements of the predetermined and adaptive signals, the electromagnetic exposure values of all possible transmitted signals are inferred.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 26, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Bertrand Hochwald, Arash Ebadi Shahrivar
  • Patent number: 11939481
    Abstract: Provided are an ink composition, comprising greater than 0.2% by weight a graphene quantum dot nanosurfactant, a printable material, and a solvent, wherein the printable material is dispersed in the solvent by the graphene quantum dot nanosurfactant, and a method of preparing an ink composition. Advantageously, the present ink composition may be printed onto 2D and 3D substrates to form printed films with improved mechanical stability and photoconductance.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: March 26, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Yanliang Zhang, Minxiang Zeng
  • Patent number: 11926545
    Abstract: Provided are catalytic assemblies which include a hollow fiber membrane permeable to a gas; a reactive coating permeable to the gas and a contaminant; and a plurality of catalytic nanoparticles embedded in the reactive coating adapted to catalyze a reaction between the gas and the contaminant. Also provided are preparation methods for the catalytic assemblies, and use thereof for treating contaminated water.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: March 12, 2024
    Assignee: University of Notre Dame du Lac
    Inventors: Kyle Doudrick, Robert Nerenberg, Randal Marks
  • Patent number: 11851713
    Abstract: Disclosed are genetic methods and tools for colon cancer disease classification in disease subtypes, CMS1, CMS2, CMS3, CMS4, as well as improved methods for rapid, more accurate, and more reliably reproducible disease subtype determination. Tailored treatment protocols are also provided, employing the predicted CMS of the subject sample. Genetic sequence binding targets for some or all of these gene panels may be affixed to a solid substrate, and included as part of a screening tool and/or diagnostic kit. The expression levels of the genes may be assessed to provide a genetic signature for a subtype or lack of subtype (CMS1, CMS2, CMS3, CMS4, combination subtype). The methods employ a scoring system, wherein a score is derived from the genetic expression profile/signature of the panel of selected genes, and a qualifying continuous score for each CMS subtype is determined against a predictive threshold for each colon cancer subtype.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: December 26, 2023
    Assignee: University of Notre Dame du Lac
    Inventor: Steven Buechler
  • Patent number: 11820767
    Abstract: Described herein are compounds and compositions, and methods of making and their use as effective agents against mycobacterial infections.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 21, 2023
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Marvin J. Miller, Garrett C. Moraski
  • Patent number: 11806407
    Abstract: Described herein are compositions and methods for a novel drug delivery platform using affinity homing. Also disclosed herein are a drug delivery system, methods for using the novel drug delivery platform and a kit.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 7, 2023
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Matthew J. Webber, Lei Zou
  • Patent number: 11779466
    Abstract: An additive manufacturing (AM) device for biomaterials comprises a reservoir, a shaft, and a material delivery head. The device can be used for intracorporeal additive manufacturing. Material within the reservoir can be expelled by a mechanical transmission element, for example a syringe pump, a peristaltic pump, an air pressure pump, or a hydraulic pressure pump. The reservoir can be a barrel, a cartridge, or a cassette. The reservoir can narrow into the shaft, and the shaft can terminate into the nozzle. The shaft can house an inner tube. The device can have an actuator joint capable of being mechanically linked to a robotic surgical system. The actuator joint can have a motor that drives the mechanical transmission element.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: October 10, 2023
    Assignee: University of Notre Dame du LAC
    Inventor: David J. Hoelzle