Patents Assigned to The University of Notre Dame
  • Publication number: 20230310490
    Abstract: Aspects of the invention are directed to methods of stimulating or promoting neurogenesis by administering to a subject of a composition comprising a cyclodextrin and a polyethylene glycol to alleviate learning, memory and cognitive deficits present in subjects afflicted with various brain disorders or from neurodegenerative disorder associated with aging.
    Type: Application
    Filed: September 3, 2021
    Publication date: October 5, 2023
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Kasturi HALDAR, Md. Suhail ALAM, Arpitha MYSORE RAJASHEKARA
  • Patent number: 11768926
    Abstract: Systems and methods for detecting textured contact lenses in an iris image are disclosed. Initially, “K” images are taken of an eye in near-infrared light, each for a different positioning of the illuminant. Three-dimensional properties of the hypothetical iris are estimated based on image processing methods. The variability of the estimated three-dimensional properties is calculated, and a classification into two classes is made based on the variability. A low variability denotes that an authentic iris pattern was presented to the sensor, whereas a high variability denotes that the sensor observes an eye wearing a textured contact lens. The systems and methods disclosed allow for detecting presentation attacks to iris recognition systems/sensors based on presentation of an eye wearing a textured contact lens in an automatic and accurate way.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: September 26, 2023
    Assignee: University of Notre Dame Du Lac
    Inventors: Adam Czajka, Kevin Bowyer, Zhaoyuan Fang
  • Publication number: 20230286922
    Abstract: We report improved adjuvant compounds that have an aryl 2-aminoimidazole structure for macrolide potentiation against a virulent strain of gram-negative bacteria, AB5075. Compounds were discovered to retain significant adjuvant activity at 10 ?M, lowering the minimum inhibitory concentration (MIC) of clarithromycin (CLR) from 8-fold to 128-fold or greater. 2-Aminoimidazole compounds linked to aryl groups via either an amide or urea linker showed significantly improved activity over control compounds.
    Type: Application
    Filed: April 19, 2021
    Publication date: September 14, 2023
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Christian MELANDER, Veronica HUBBLE
  • Patent number: 11746388
    Abstract: A system and methods of characterizing a population of a virus, bacteriophage, or other microbes in a microbiome that includes the steps of separating a sample of microbiota into more than one fraction by continuous capillary zone electrophoresis based on the physiochemical properties of the microbes in the microbiota using a constant voltage applied to the sample during the continuous zone electrophoresis. At least one separated fraction includes an intact virus, bacteriophage, or other microbe that may be visualized and/or directly sequenced to characterize the population of the virus, bacteriophage, or other microbe in the microbiome.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: September 5, 2023
    Assignee: University of Notre Dame Du Lac
    Inventors: Norman Dovichi, Bonnie Jaskowski Huge, Matthew Champion
  • Publication number: 20230271950
    Abstract: Here we report the discovery of 2-(4-(3-(trifluoromethoxy)phenoxy)picolinamido)benzo[d]oxazole-5-carboxylate as an antibacterial with potent and selective activity against C. difficile. Its MIC50 and MIC90 values, documented across 101 strains of C. difficile, are 0.12 and 0.25 ?g/mL, respectively. The compound is effective against C. difficile both at the logarithmic (vegetative) and stationary phases of growth. It targets cell-wall biosynthesis, as assessed both by macromolecular biosynthesis assays and by scanning-electron microscopy. Animals infected with a lethal dose of C. difficile and treated with compound 1 had better survival compared to treatment with vancomycin, which is the front-line antibiotic used for severe recurrent C. difficile infection.
    Type: Application
    Filed: June 28, 2021
    Publication date: August 31, 2023
    Applicant: University of Notre Dame Du Lac
    Inventors: Shahriar MOBASHERY, Mayland CHANG, Enrico SPERI
  • Patent number: 11739937
    Abstract: A plasma injection module includes a fuel receiving end, a discharge end opposite the fuel receiving end, and an axial fluid pathway extending between the fuel receiving end and the discharge end. An insulator assembly defines a first portion of the axial fluid pathway proximate to the fuel receiving end. An injection tube assembly having a permanent magnet is positioned downstream of the insulator. A voltage input connection is arranged downstream of the insulator assembly and upstream of the injection tube assembly. The voltage input connection secures a voltage source to the injection tube to form a plasma filament within and adjacent to the axial fluid pathway. During operation a permanent magnet produces a magnetic field that interacts with the plasma filament to rotate the plasma filament and increase an area of ignition between the plasma filament and the combustible material at the discharge end.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: August 29, 2023
    Assignee: University of Notre Dame du Lac
    Inventor: Sergey B. Leonov
  • Patent number: 11731947
    Abstract: Substituted nitrobenzothiazinones (BTZs) are potent antituberculosis prodrugs that are reductively activated to produce nitroso moieties that form covalent adducts with a cysteine residue of decaprenylphosphoryl-?-D-ribose-2?-oxi-dase (DprE1) of Mycobacterium tuberculosis (Mtb). The resulting cell wall synthesis inhibition is lethal to Mtb, leading to consideration of development of BTZs for clinical use. The hydride-induced reduction of the nitroaromatic proceeds by reversible formation of the corresponding Meisenheimer complex. Herein we demonstrate that chemical reduction of BTZ043 with NaBD4 followed by reoxidation incorporates deuterium into the core nitro aromatic warhead. Subsequent reduction of the deuterated species is not affected, but, as expected, reoxidation is slowed by the deuterium isotope effect, thus prolonging the lifetime of the active nitroso oxidation state.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: August 22, 2023
    Assignee: University of Notre Dame du Lac
    Inventors: Marvin J. Miller, Viktor Krchnak, Rui Liu
  • Publication number: 20230219933
    Abstract: The near-infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. But dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso-Aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical and biodistribution properties that greatly enhance bioimaging performance.
    Type: Application
    Filed: February 22, 2021
    Publication date: July 13, 2023
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Bradley D. Smith, Donghao Li
  • Patent number: 11664840
    Abstract: Aspects of the subject disclosure may include, for example, receiving, by a first radio module at a first location, a wireless signal, to obtain a first received RF signal. The wireless signal includes information originating at a remote transmitter and conveyed via a wireless channel. An envelope of the first received RF signal is detected by the first radio module without requiring a local oscillator, to obtain a first baseband signal. The first baseband signal may be filtered and/or amplified, after which it is provided to a processor. The processor also obtains a second digital signal from a second radio module receiving the wireless signal at a second location and determines an estimate of the information originating at the remote transmitter according to the first and second signals. Other embodiments are disclosed.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: May 30, 2023
    Assignees: UNIVERSITY OF NOTRE DAME DU LAC, AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Ralf Bendlin, Jonathan David Chisum, Nicholas Joseph Estes, Bertrand Martyn Hochwald, Aditya Chopra
  • Patent number: 11638763
    Abstract: Embodiments of the present disclosure provide a nanoparticle based platform, and nanoallergens for identifying, evaluating and studying allergen mimotopes as multiple copies of a single mimotope or various combinations on the same particle. The nanoparticle is extremely versatile and allows multivalent binding to IgEs specific to a variety of mimotopes, simulating allergen proteins. Nanoparticles can include various molecular ratios of components. For example, the nanoallergens can include about 0.1-40% mimotope-lipid conjugate and about 60-99.9% lipid. The mimotope-lipid conjugate includes a mimotope, a first linker, and lipid molecule. Nanoallergens can be used in in vitro and in vivo applications to identify a specific patient's sensitivity to a set of epitopes and predict a symptomatic clinical response, identify allergen epitopes through blind screening peptide sequences from allergen protein, and in a clinical application similar to a scratch test.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 2, 2023
    Assignee: University of Notre Dame du Lac
    Inventors: Zihni Basar Bilgicer, Peter Edward Deak, Tanyel Kiziltepe Bilgicer, Jared Francis Stefanick, Jonathan Darryl Ashley
  • Publication number: 20230087020
    Abstract: Provided herein are compositions and methods related to extending viable preservation of organs and tissues. The compositions comprise superoxide dismutase, catalase, vitamin E, and glutathione, and optionally, a preservation solution (e.g., University of Wisconsin solution). Also provided are methods of preserving the contractile function of a contractile tissue, as well as kits comprising the compositions described herein.
    Type: Application
    Filed: March 10, 2021
    Publication date: March 23, 2023
    Applicants: University of Florida Research Foundation, Incorporated, University of Notre Dame du Lac
    Inventors: Keith L. March, Dmitry Olegovich Traktuev, Pinar Zorlutuna, Bradley Ellis
  • Patent number: 11599798
    Abstract: A method operating a Graphics Processing Unit (GPU) memory can be provided by accessing specified training parameters used to train a Deep Neural Network (DNN) using a GPU with a local GPU memory, the specified training parameters including at least a specified batch size of samples configured to train the DNN. A sub-batch size of the samples can be defined that is less than or equal to the specified batch size of samples in response to determining that an available size of the local GPU memory is insufficient to store all data associated with training the DNN using one batch of the samples. Instructions configured to train the DNN using the sub-batch size can be defined so that an accuracy of the DNN trained using the sub-batch size is about equal to an accuracy of the DNN trained using the specified batch size of the samples.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: March 7, 2023
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Xiaobo Sharon Hu, Danny Ziyi Chen, Xiaoming Chen
  • Patent number: 11592391
    Abstract: Mid-infrared photothermal heterodyne imaging (MIR-PHI) techniques described herein overcome the diffraction limit of traditional MIR imaging and uses visible photodiodes as detectors. MIR-PHI experiments are shown that achieve high sensitivity, sub-diffraction limit spatial resolution, and high acquisition speed. Sensitive, affordable, and widely applicable, photothermal imaging techniques described herein can serve as a useful imaging tool for biological systems and other submicron-scale applications.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 28, 2023
    Assignee: University of Notre Dame du Lac
    Inventors: Zhongming Li, Gregory Hartland, Masaru Ken Kuno
  • Patent number: 11593097
    Abstract: Systems and methods for maintaining the safety of a software-based system. One method includes automatically generating a first artifact tree for a hazard for a first version of the system and automatically transforming the first artifact tree into a first augmented tree using a set of heuristics. The method also includes automatically generating a second artifact tree for the hazard for a second version of the system and automatically transforming the second artifact tree for the hazard into a second augmented tree using the set of heuristics. The method further includes automatically comparing the first augmented tree and the second augmented tree to generate a delta view, and automatically generating, based on the delta view, at least one selected from a group consisting of a safety warning for the second version of the software-based system and an actionable recommendation to maintain safety of the second version of the software-based system.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 28, 2023
    Assignee: University of Notre Dame du Lac
    Inventors: Jane Huang, Michael Vierhauser, Ankit Agrawal
  • Patent number: 11591574
    Abstract: Methods to form a surface coating and surface pattern, which are based on adsorption of hydrocarbon chains that can be used with imaging optics to visualize macrophage fusion and multinucleated giant cell formation with living specimens are described.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: February 28, 2023
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: James Faust, Tatiana Ugarova, Robert Ros, Wayne Christenson, Kyle Doudrick
  • Patent number: 11559514
    Abstract: The present disclosure encompasses antibacterial compositions and methods of treating bacterial infections caused by resistant bacteria.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: January 24, 2023
    Assignees: Washington University, University of Notre Dame du Lac
    Inventors: Gautam Dantas, Patrick Gonzales, Kevin Forsberg, Mitchell Pesesky, Mayland Chang, Shahriar Mobashery
  • Patent number: 11549152
    Abstract: Products, systems, and methods for classifying human colorectal cancer into a consensus molecular subtype (CMS) and for assessing risk of recurrence based on CMS scores and based on risk scores derived from abbreviated gene expression profiles, for determining suitable treatment protocols for human colorectal cancer patients based on the determined CMS classification and based on the determined risk of recurrence, and for administering the suitable treatment protocols.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: January 10, 2023
    Assignee: University of Notre Dame du Lac
    Inventor: Steven Buechler
  • Publication number: 20230006871
    Abstract: Aspects of the subject disclosure may include, a non-linear energy detector that obtains baseband information from a mixed signal that corresponds to an information component of a received radio frequency (RF) signal, wherein the mixed signal comprises a local oscillator signal combined, without multiplication, with the received RF signal, wherein the received RF signal comprises a carrier wave component operating at a carrier frequency within a millimeter wave spectrum, wherein the non-linear energy detector is associated with a non-linear current-voltage (I-V) characteristic curve, and wherein the baseband information is obtained by applying the mixed signal to the non-linear I-V characteristic curve. Other embodiments are disclosed.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 5, 2023
    Applicants: AT&T Intellectual Property I, L.P., University of Notre Dame du Lac
    Inventors: Ralf Bendlin, Aditya Chopra, Bertrand Martyn Hochwald, Nicholas Joseph Estes, Jonathan David Chisum, Kang Gao
  • Patent number: 11532355
    Abstract: An N-bit non-volatile multi-level memory cell (MLC) can include a lower electrode and an upper electrode spaced above the lower electrode. N ferroelectric material layers can be vertically spaced apart from one another between the lower electrode and the upper electrode, wherein N is at least 2 and at least one dielectric material layer having a thickness of less than 20 nm can be located between the N ferroelectric material layers.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: December 20, 2022
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Kai Ni, Suman Datta, Andrew Kummel
  • Publication number: 20220356147
    Abstract: Infections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global t health threat. Often clinicians are forced to administer the last resort antibiotic colistin, however colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics. We recently disclosed that the known IKK-13 inhibitor IMD-0354 potently suppresses colistin resistance in several Gram-negative strains. In this disclosure, we explore the structure activity relationship (SAR) between the IMD-0354 scaffold and colistin resistance suppression, and identify several compounds with more potent activity than the parent against highly colistin resistant strains of Acinetobacter baumannii and Klebsiella pneumoniae.
    Type: Application
    Filed: October 8, 2020
    Publication date: November 10, 2022
    Applicant: University of Notre Dame du Lac
    Inventors: Christian Melander, Alexander WEIG, Akash Kumar BASAK