Patents Assigned to The University of Washington
  • Patent number: 12285636
    Abstract: Non-planar holographic beam shaping lenses for acoustics are disclosed herein. In one embodiment, an ultrasonic therapy system that is configured to apply ultrasound to a target in a body includes: an ultrasonic transducer configured to generate the ultrasound; and a customizable holographic lens configured to focus the ultrasound onto a focal area of a target that is an object or a portion of the object in the body. The customizable holographic lens is designed and produced based on the target. Furthermore, the customizable holographic lens is curved to mate with a front surface of the ultrasonic transducer.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: April 29, 2025
    Assignee: The University of Washington
    Inventors: Michael R. Bailey, Mohamed Abdalla Ghanem, Adam D. Maxwell
  • Patent number: 12239376
    Abstract: Handheld optical imaging devices and methods are disclosed herein. In an embodiment, an optical coherence tomography (OCT) system includes an OCT probe that is configured as a hand-held probe for imaging an eye of a patient, the OCT probe includes: an OCT optical system configured to direct a source OCT signal to the eye and configured to capture OCT scan signal returning from the eye; and an on-probe display carried by a handle, wherein the on-probe display is configured to display imaging data of the eye of a patient to an operator during OCT imaging.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 4, 2025
    Assignee: The University of Washington
    Inventors: Ruikang K. Wang, Shaozhen Song
  • Patent number: 12241901
    Abstract: Systems and methods for accurate optical pH sensing of biofilms are disclosed. In one embodiment, a method of measuring an extracellular pH level using multiple wavelengths emitted by a fluorescent substance includes: exciting the fluorescent substance at an excitation wavelength; measuring a first fluorescence intensity at a first wavelength of a fluorescence emission; and measuring a second fluorescence intensity at a second wavelength of the fluorescence emission. The second wavelength is different from the first wavelength. The method also includes determining the extracellular pH level based on the first fluorescence intensity at the first wavelength and the second fluorescence intensity at the second wavelength.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: March 4, 2025
    Assignee: The University of Washington
    Inventors: Eric J. Seibel, Leonard Y. Nelson, Manuja Sharma, Jasmine Graham
  • Patent number: 10829756
    Abstract: 2-ketoacid decarboxylase enzymes, compositions encoding for 2 ketoacid decarboxylase enzymes, and host cells comprising such enzymes or compositions are provided.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: November 10, 2020
    Assignees: The Regents of the University of California, The University of Washington
    Inventors: Justin Siegel, Steve Bertolani, Wai Shun Mak, James Liao, Stephen Tran, Ryan Marcheschi, James Thompson, David Baker
  • Patent number: 10301446
    Abstract: A method for generating a microstructure that includes microcellular bubbles, in a material that includes molecules of a thermoplastic polymer, comprises: determining a size-index for the material that represents an average size of the thermoplastic polymer molecules included in the material, and in response to the determined size-index, setting a parameter of a process to generate a microstructure in the material that includes microcellular bubbles. The process to generate a microstructure in the material includes: 1) infusing into the material, during a first period, a gas that does not react with the material, 2) making the gas-infused material thermodynamically unstable.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: May 28, 2019
    Assignees: Dart Container Corporation, The University of Washington through its Center for Commercialization
    Inventors: Krishna V. Nadella, Vipin Kumar, Huimin Guo
  • Patent number: 10202588
    Abstract: Hybrid nuclease molecules and methods for treating an immune-related disease or disorder in a mammal, and a pharmaceutical composition for treating an immune-related disease in a mammal.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 12, 2019
    Assignee: The University of Washington
    Inventors: Jeffrey A. Ledbetter, Martha Hayden-Ledbetter, Keith Elkon, Xizhang Sun
  • Patent number: 10029401
    Abstract: The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polylactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 24, 2018
    Assignees: Dart Container Corporation, The University of Washington
    Inventors: Krishna Nadella, Gregory Branch, Vipin Kumar, Michael Waggoner
  • Patent number: 9477307
    Abstract: Methods, articles of manufacture, and devices related to generating six degree of freedom (DOF) haptic feedback are provided. A computing device can receive first depth data about an environment. The computing device can generate a first plurality of points from the first depth data. The computing device can determine a virtual tool, where the virtual tool is specified in terms of a translation component for the virtual tool and a rotation component for the virtual tool. The computing device can determine a first force vector between the virtual tool and the first plurality of points. The computing device can send a first indication of haptic feedback based on the first force vector.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: October 25, 2016
    Assignee: The University of Washington
    Inventors: Howard Jay Chizeck, Fredrik Ryden
  • Patent number: 9471142
    Abstract: Methods, articles of manufacture, and devices related to generating haptic feedback for point clouds are provided. A computing device receives depth data about an In-Contact environment. The computing device generates a point cloud from the depth data. The computing device determines a haptic interface point (HIP). The computing device determines a haptic interface point (HIP). The computing device determines a force vector between the HIP and point cloud. The computing device sends an indication of haptic feedback based on the force vector.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 18, 2016
    Assignee: The University of Washington
    Inventors: Howard Jay Chizeck, Fredrik Rydén, Sina Nia Kosari, Blake Hannaford, Nicklas Gustafsson, Hawkeye I. King
  • Patent number: 9260529
    Abstract: The present invention provides novel CD180 binding molecules, methods for their identification, and methods for their use.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: February 16, 2016
    Assignee: The University of Washington Through Its Center For Commercialization
    Inventors: Martha Hayden-Ledbetter, Jeffrey Ledbetter
  • Publication number: 20150030631
    Abstract: This invention relates to therapeutic compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The methods are particularly effective for protecting mammals from herpes simplex virus.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 29, 2015
    Applicants: VICAL INCORPORATED, The University of Washington
    Inventors: ADRIAN VILALTA, MICHAL MARGALITH, LICHUN DONG, DAVID M. KOELLE
  • Publication number: 20150010597
    Abstract: This invention relates to therapeutic polynucleotide compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The polynucleotide compositions are particularly effective for protecting mammals from herpes simplex virus (HSV), such as HSV gD2, VP11/12, and VP13/14 polypeptides.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 8, 2015
    Applicants: Vical Incorporated, The University Of Washington
    Inventors: Adrian VILALTA, Michal Margalith, Lichun Dong, David M. Koelle
  • Publication number: 20150010596
    Abstract: This invention relates to therapeutic compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The methods are particularly effective for protecting mammals from herpes simplex virus.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 8, 2015
    Applicants: Vical Incorporated, The University of Washington
    Inventors: Adrian VILALTA, Michal Margalith, Lichun Dong, David M. Koelle
  • Patent number: 8852610
    Abstract: This invention relates to therapeutic compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The methods are particularly effective for protecting mammals from herpes simplex virus.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: October 7, 2014
    Assignees: Vical Incorporated, The University of Washington
    Inventors: Adrian Vilalta, Michal Maragalith, Lichun Dong, David M. Koelle
  • Patent number: 8852611
    Abstract: This invention relates to therapeutic compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The methods are particularly effective for protecting mammals from herpes simplex virus.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: October 7, 2014
    Assignees: Vical Incorporated, The University of Washington
    Inventors: Adrian Vilalta, Michal Maragalith, Lichun Dong, David M. Koelle
  • Patent number: 8846387
    Abstract: This invention provides methods for obtaining targeted gene modification in vertebrate cells using parvoviral vectors, including adeno-associated virus (AAV). The parvoviral vectors used in the methods of the invention are capable of targeting a specific genetic modification to a preselected target locus in a cellular genome by homologous pairing.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 30, 2014
    Assignee: The University of Washington
    Inventors: David W. Russell, Roli K. Hirata
  • Patent number: 8840904
    Abstract: This invention relates to therapeutic polynucleotide compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The polynucleotide compositions are particularly effective for protecting mammals from herpes simplex virus (HSV), such as HSV VP11/12 polypeptides.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 23, 2014
    Assignees: Vical Incorporated, The University of Washington
    Inventors: Adrian Vilalta, Michal Margalith, Lichun Dong, David M. Koelle
  • Patent number: 8834894
    Abstract: This invention relates to therapeutic polynucleotide compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The polynucleotide compositions are particularly effective for protecting mammals from herpes simplex virus (HSV), such as HSV gD2 polypeptides.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 16, 2014
    Assignees: Vical Incorporated, The University of Washington
    Inventors: Adrian Vilalta, Michal Margalith, Lichun Dong, David M. Koelle
  • Patent number: 8828408
    Abstract: This invention relates to therapeutic polynucleotide compositions and methods for systemic immune activation which are effective for eliciting both a systemic, non-antigen specific immune response and a strong antigen-specific immune response in mammals. The polynucleotide compositions are particularly effective for protecting mammals from herpes simplex virus (HSV), such as HSV VP13/14 polypeptides.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 9, 2014
    Assignees: Vical Incorporated, The University of Washington
    Inventors: Adrian Vilalta, Michal Margalith, Lichun Dong, David M. Koelle
  • Patent number: 8673216
    Abstract: The invention provides devices, systems, and methods for detecting an analyte vapor. Particularly, electronegative analyte vapors, such as those vapors evolving from explosive compounds, are typical analytes detected the devices. The devices operate using a resistivity change mechanism wherein a nanostructured chemiresistive material undergoes a resistivity change in the presence of an analyte vapor. A resistivity change indicates the presence of an analyte.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 18, 2014
    Assignee: The University of Washington
    Inventors: Antao Chen, Danling Wang, Qifeng Zhang, Guozhong Cao