Patents Assigned to Thermometrics Inc.
  • Patent number: 8874389
    Abstract: A flow sensor assembly is provided and includes a flow conduit configured to impart a disturbance to a flow, multiple sensors disposed at respective sensing locations along the flow conduit. Each sensor is responsive to the disturbance of the flow and generates a corresponding response signal. The flow sensor assembly further includes a processor operably connected to each sensor, the processor being configured to compute a cross-correlation function between the response signals generated by said sensors, and determine a flow rate and a direction for the flow through the conduit based on the computed cross-correlation function. Additional flow sensor assembly arrangements are also disclosed.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 28, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Ertugrul Berkcan, Shankar Chandrasekaran, Bo Li, Stanton Earl Weaver
  • Patent number: 8859909
    Abstract: A flexible cable with a substrate divided into at least two sections is disclosed. The first section includes a first electrically conductive track and a first attach pad, while the section includes a second and third electrically conductive tracks, as well as a second attach pad. The first section is disposed on the second section to align the attach pads and connect the first electrically conductive track to the third electrically conductive track. The resulting flexible cable can be used with a low profile electrical device.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 14, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventor: Gary Dimmock
  • Patent number: 8857264
    Abstract: A catheter die is provided and includes an elongate body having first and second opposing end portions and an end face at the first one of the first and second opposing end portions. The elongate body defines a cavity within the first end portion with an interior facing surface of the cavity disposed to extend alongside at least a portion of the first end face. At least one or more piezoresistive pressure sensors are operably disposed proximate to the cavity.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 14, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventor: Sisira Kankanam Gamage
  • Publication number: 20140238142
    Abstract: A catheter die is provided and includes a device layer defining a cavity and including a piezoresistive pressure sensor operably disposed proximate to the cavity and an insulator having an opening and being disposed on an upper surface of the device layer such that a portion of the piezoresistive pressure sensor is exposed through the opening. The catheter die further includes an insulation layer bonded to a lower surface of the device layer and first and second bond pads, the first bond pad being electrically coupled to the portion of the piezoresistive pressure sensor via the opening and the second bond pad being disposed on the insulation layer.
    Type: Application
    Filed: May 6, 2014
    Publication date: August 28, 2014
    Applicant: Amphenol Thermometrics, Inc.
    Inventor: Sisira K. GAMAGE
  • Patent number: 8748231
    Abstract: A method of attaching a die to a carrier using a temporary attach material is disclosed. The method comprises attaching the temporary attach material between a surface of the die and a surface of the carrier. The temporary attach material attaches the die to the carrier. The method comprises bonding at least one connector to the die and the carrier. The connector includes a first end bonded to the carrier and a second end bonded to the die. The method further comprises encapsulating at least a portion of the die and at least a portion of the at least one connector by an encapsulation material.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Elizabeth Anne Logan, Terry Lee Marvin Cookson, Sisira Kankanam Gamage, Ronald Almy Hollis
  • Patent number: 8739604
    Abstract: A gas sensor is disclosed. The gas sensor includes a gas sensing layer, at least one electrode, an adhesion layer, and a response modification layer adjacent to said gas sensing layer and said layer of adhesion. A system having an exhaust system and a gas sensor is also disclosed. A method of fabricating the gas sensor is also disclosed.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 3, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Kalaga Murali Krishna, Geetha Karavoor, John Patrick Lemmon, Jun Cui, Vinayak Tilak, Mohandas Nayak, Ravikumar Hanumantha
  • Publication number: 20140132476
    Abstract: An antenna and method of making the same is disclosed wherein the antenna includes a seal assembly comprising a seal plate to prevent material used to form a seal around the conductor element from entering into the air gap of the antenna body.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: Amphenol Thermometrics, Inc.
    Inventor: David J. GEER
  • Patent number: 8714021
    Abstract: A catheter die is provided and includes a device layer defining a cavity and including a piezoresistive pressure sensor operably disposed proximate to the cavity and an insulator having an opening and being disposed on an upper surface of the device layer such that a portion of the piezoresistive pressure sensor is exposed through the opening. The catheter die further includes an insulation layer bonded to a lower surface of the device layer and first and second bond pads, the first bond pad being electrically coupled to the portion of the piezoresistive pressure sensor via the opening and the second bond pad being disposed on the insulation layer.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 6, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventor: Sisira Kankanam Gamage
  • Patent number: 8698051
    Abstract: A heater includes at least one heating element having a resistance that varies non-linearly with respect to a temperature of the heating element. The heating element includes a first surface, a second surface opposite the first surface, a third surface extending between the first and second surfaces, and a fourth surface extending between the first and second surfaces, opposite the third surface. The heating element has a height defined between the first and second surfaces, and a width defined between the third and fourth surfaces, and wherein the width is less than the height. The heater also includes at least one electrode coupled to the first surface and configured to generate an electric field across the heating element and cause a current to flow through the heating element.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 15, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Robert Christopher Twiney, Christopher Martin Morter
  • Patent number: 6204748
    Abstract: Rare earth elemental thermistors and compositions useful for making such thermistors. In particular, it relates to yttrium and chromium oxide based thermistor systems having at least two phases: YCrO3 and Cr2O3 and their use for measuring temperature.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: March 20, 2001
    Assignee: Keystone Thermometrics, Inc.
    Inventor: David J. Sorg
  • Patent number: 6136231
    Abstract: The present invention relates to rare earth elemental thermistors and compositions useful for making such thermistors. In particular, it relates to yttrium and chromium oxide based thermistor systems having at least two phases: YCrO.sub.3 and Cr.sub.2 O.sub.3 and their use for measuring temperature.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: October 24, 2000
    Assignee: Keystone Thermometrics, Inc.
    Inventor: David J. Sorg
  • Patent number: 6125529
    Abstract: The present invention relates to making sensors by cutting pieces from a boule or ingot of a metal oxide single crystal. The sensors produced are also described.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: October 3, 2000
    Assignee: Thermometrics, Inc.
    Inventors: Carol Zwick Rosen, Donald G. Wickham, John Carter, Jr., David Sorg
  • Patent number: 6099164
    Abstract: The invention is directed to a thermistor created using a monocrystalline form of a nickel-manganese-oxide cubic spinel and methods of using same as a sensor in an electrical circuit.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 8, 2000
    Assignee: Thermometrics, Inc.
    Inventors: Carol Zwick Rosen, John Carter, Jr.
  • Patent number: 6027246
    Abstract: Monocrystalline nickel-cobalt-manganese-copper oxide having a cubic spinel structure over a broad range of concentration ratios of manganese/cobalt/nickel/copper, including methods of producing such monocrystals, particularly those having a quaternary cubic spinel structure. Sensors having desirable electrical properties are disclosed, which sensors comprise at least a portion of such monocrystals. In particular, such sensors are highly accurate temperature sensors or thermistors having high sensitivity, good reproducibility and improved aging characteristics.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: February 22, 2000
    Assignee: Thermometrics, Inc.
    Inventors: Carol Zwick Rosen, Donald G. Wickham
  • Patent number: 5936513
    Abstract: The invention relates to the growth of nickel-iron-manganese oxide monocrystals having a cubic spinel geometry. Methods of their growth and sensors constructed with same are also described.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Thermometrics, Inc.
    Inventors: Carol Zwick Rosen, Donald G. Wickham
  • Patent number: 5830268
    Abstract: The invention relates to the growth of nickel manganese oxide monocrystals having a cubic spinel geometry. Methods of their growth and sensors constructed with same are also described.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 3, 1998
    Assignee: Thermometrics, Inc.
    Inventors: Carol Zwick Rosen, Donald G. Wickham
  • Patent number: 5653954
    Abstract: The invention relates to the growth of nickel manganese oxide monocrystals having a cubic spinel geometry. Methods of their growth and sensors constructed with same are also described.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 5, 1997
    Assignee: Thermometrics, Inc.
    Inventors: Carol Zwick Rosen, Donald G. Wickham
  • Patent number: 5257630
    Abstract: A biomedical pressure sensor having a pressure sensing diaphragm is provided with a distensible membrane overlying the diaphragm, and the diaphragm is provided with one or more holes. During normal operation, externally applied pressure forces the membrane against the diaphragm so that the membrane and diaphragm deform under pressure as a unit and transmit pressure-applied forces to a force transducer within the probe housing. When a reference pressure exceeding the externally applied pressure is supplied within the probe housing, such reference pressure passes through the hole in the diaphragm and forces the membrane away from the diaphragm, thereby isolating the diaphragm from the externally applied pressure and bringing the diaphragm to a zero-differential pressure condition. Use of a hole in the diaphragm permits an extremely compact construction.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: November 2, 1993
    Assignees: Thermometrics, Inc., Baxter International Inc.
    Inventors: Harold Broitman, Arthur Goldberg, Michael Higgins, James Mottola
  • Patent number: 4886070
    Abstract: An improved miniature, in vivo, pressure sensor is disclosed which comprises a housing having an internal chamber adapted to be connected to a conduit for varying the pressure therein; a piezoresistive element positioned in the chamber and adapted to be connected to a circuit for sensing changes in the resistance of the piezoresistive element; a pressure responsive element carried by the housing and having an inner portion and an outer portion, the inner portion being exposed to the pressure extant in the interanl chamber and the outer portion being exposed to ambient pressure conditions outside of the housing; and a coupling device releasably coupling the pressure responsive element to the piezoresistive element in such a manner that when equal pressures are concurrently applied to the inner and outer portions of the pressure responsive element, the pressure responsive element applies a predetermned load to thre piezoresistive element and when unequal pressures are concurrently applied to the inner and outer
    Type: Grant
    Filed: May 11, 1988
    Date of Patent: December 12, 1989
    Assignee: Thermometrics, Inc.
    Inventor: Philip C. Demarest
  • Patent number: 4554927
    Abstract: A gauge element for and a pressure sensor for sensing phenomena such as pressure and temperature comprising a substantially U-shaped unitary piezoresistive element formed from a silicon crystal. When employed for sensing pressure and temperature, resistor means are provided along with means for coupling the first and second legs of the piezoresistive element in an electrical circuit to provide a temperature independent output indicative of the pressure imparted to one leg of the piezoresistive element, and for coupling the second leg and the resistor means to provide an output independent of the pressure imparted to the first leg and indicative of the environmental temperature. This configuration is particularly suitable for miniaturization and therefore useful for biomedical applications wherein the sensor can be inserted into a body transcutaneously by a catheter.
    Type: Grant
    Filed: August 30, 1983
    Date of Patent: November 26, 1985
    Assignee: Thermometrics Inc.
    Inventor: Theodore J. Fussell