Patents Assigned to Think Surgical, Inc.
  • Patent number: 9839531
    Abstract: A process and system for performing orthopedic surgery to create a series of channels with a subject's bone to allow a reduced pressure system to be applied directly to the bone-implant interface to enhance bone healing is provided. The process for to promote healing of a bone of a subject includes creating a three-dimensional model of the bone; preoperatively planning a location of an implant relative to the model; creating a plan for the location of precision channels that reach the bone-implant interface based on the model and the implant; resurfacing the bone to fit the implant into or onto the bone based on the preoperative plan; and milling the precision channels into the bone in the location to promote healing of the bone and/or bone implant interface; and applying a pressure reduction system at the bone-implant interface to promote bone healing.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 12, 2017
    Assignee: Think Surgical, Inc
    Inventors: Nathan A Netravali, In K Mun
  • Publication number: 20170258532
    Abstract: An articulating drill system is provided that includes a hand-held portion and a drill portion. At least two actuators are provided for controlling at least two axes of the drill portion. A navigation system is provided to control the at least two actuators. In some embodiments, a tool is provided with the drill portion and adapted to interact with patient tissue. The drill portion can be modified to include at least two rigid objects in communication with the actuators and attached to the drill portion. The system can be used to make any linear cut within a deviation of 1.0 mm and 1.0?, or better in patient tissue.
    Type: Application
    Filed: September 23, 2015
    Publication date: September 14, 2017
    Applicant: Think Surgical, Inc.
    Inventors: Stan SHALAYEV, Joel Zuhars, Allen B. KANTROWITZ, In K. MUN, Dan FULLER, Simon GROVER
  • Publication number: 20170245830
    Abstract: Systems and process are provided for a tool to create a registration matrix for a bone in three dimensional workspaces relative to a system using the absence of an ultrasonic reflection from an ultrasonic sensor attached to a tracking system to build the registration matrix model. The system has hardware and software that creates an absence of ultrasonic reflection, and utilizes the information to identify the location and orientation of a set of conic volumes in order to build an estimate of the position and orientation of the bone relative to the base system, and to use the position and orientation changes to update the registration and to detect bone motion. Embodiments of invention provide a process of registering part or all of a bone without directly touching the bone using ultrasound, and as a result support a non-invasive or less-invasive approach to bone registration and bone motion detection for a system.
    Type: Application
    Filed: September 21, 2015
    Publication date: August 31, 2017
    Applicant: Think Surgical, Inc.
    Inventors: Nathan A. NETRAVALI, Micah FORSTEIN, Joel ZUHARS, In K. MUN
  • Patent number: 9545288
    Abstract: Described herein are systems and devices for counterbalancing a surgical robotic system using a counterbalanced Z-axis drive. The counterbalanced Z-axis drive includes a self-centering ball screw assembly having a linear actuator and a counter weight. The counter weight is configured to substantially support a load associated with an arm of the robotic system when the driving portion is engaged or disengaged. In some embodiments, the counterbalanced Z-axis drive controls the arm and a movable effector mounted on the arm. Also disclosed herein are systems and devices for direct drive actuation of rotary axes of the arm which reduce the size and weight of the arm.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 17, 2017
    Assignee: THINK SURGICAL, INC.
    Inventor: James P. Morash
  • Publication number: 20160038244
    Abstract: A process and system for performing orthopaedic surgery to create a series of channels with a subject's bone to allow a reduced pressure system to be applied directly to the bone-implant interface to enhance bone healing is provided. The process for to promote healing of a bone of a subject includes creating a three-dimensional model of the bone; preoperatively planning a location of an implant relative to the model; creating a plan for the location of precision channels that reach the bone-implant interface based on the model and the implant; resurfacing the bone to fit the implant into or onto the bone based on the preoperative plan; and milling the precision channels into the bone in the location to promote healing of the bone and/or bone implant interface; and applying a pressure reduction system at the bone-implant interface to promote bone healing.
    Type: Application
    Filed: March 17, 2014
    Publication date: February 11, 2016
    Applicant: Think Surgical, Inc.
    Inventors: Nathan A Netravali, In K Mun