Patents Assigned to Tokai Carbon Co., Ltd.
  • Patent number: 9102840
    Abstract: A polyurethane resin-bonded pigment may exhibit excellent image density, dispersibility, storage stability, and resolubility, and may form an ink film that exhibits marker resistance and rubfastness. The polyurethane resin-bonded pigment is produced by bringing (I) a pigment having a surface acidic group into contact with (II) a basic compound having two or more amino groups selected from a primary amino group and a secondary amino group in its molecule in an aqueous medium to obtain a pigment having an unreacted surface amino group, and bringing the pigment having an unreacted surface amino group into contact with (III) a water-dispersible polyurethane resin having an isocyanate end group and (IV) a polyisocyanate compound to bond the pigment having an unreacted surface amino group and the water-dispersible polyurethane resin (III) having an isocyanate end group via a urea bond.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 11, 2015
    Assignee: TOKAI CARBON CO., LTD.
    Inventors: Shigehiro Tanaka, Asami Takenaka, Yukari Ishibashi
  • Publication number: 20150151975
    Abstract: A CVD-SiC formed body has low light transmittance and high resistivity, and may suitably be used as a member for an etcher that is used for a semiconductor production process, for example. The SiC formed body is formed using a CVD method, and includes 1 to 30 mass ppm of boron atoms, and more than 100 mass ppm and 1000 mass ppm or less of nitrogen atoms. The SiC formed body preferably has a resistivity of more than 10 ?·cm and 100,000 ?·cm or less, and a light transmittance at a wavelength of 950 nm of 0 to 1%.
    Type: Application
    Filed: September 13, 2012
    Publication date: June 4, 2015
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Takaomi Sugihara, Masaaki Asakura, Takeshi Tokunaga, Tetsuya Sadaki
  • Patent number: 9045583
    Abstract: A pigment that exhibits excellent image density, dispersibility, storage stability, and resolubility, and forms an ink film that exhibits marker resistance and rubfastness is provided. A polyurethane resin-bonded pigment is produced by bringing (I) a pigment having a surface acidic group into contact with (II) a water-dispersible polyurethane resin having a tertiary amino group and an anionic polar group or a nonionic polar chain in an aqueous medium. The pigment (I) is preferably self-dispersible carbon black having a surface acidic group.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: June 2, 2015
    Assignee: TOKAI CARBON CO., LTD.
    Inventors: Yukari Ishibashi, Asami Takenaka, Shigehiro Tanaka
  • Patent number: 9018317
    Abstract: A method for producing a pigment dispersion composition having excellent image density, dispersibility, and storage stability, has high resolubility, and forms an ink film having excellent marker resistance and scratch resistance. The method includes bringing a pigment (I) having a surface acidic group and a basic compound (II) having two or more ammo groups selected from a primary amino group and a secondary amino group in its molecule, into contact with each other in an aqueous medium to prepare a pigment having an unreacted surface amino group, bringing the pigment into contact with a polyisocyanate polyurethane resin (III) having two or more isocyanate end groups so that the pigment and the polyisocyanate polyurethane resin are bonded via a urea bond to prepare a dispersion of a polyurethane resin-bonded pigment (A), and heating the dispersion of the polyurethane resin-bonded pigment (A) at 40 to 100° C. for 1 to 30 days.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 28, 2015
    Assignee: Tokai Carbon Co., Ltd.
    Inventors: Asami Takenaka, Shigehiro Tanaka, Yukari Ishibashi
  • Patent number: 9000449
    Abstract: A semiconductor substrate that includes a semiconductor layer that exhibits high crystallinity includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine, and a semiconductor layer that is grown on the surface of the graphite layer, or includes a substrate that includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine on its surface, a buffer layer that is grown on the surface of the graphite layer, and a semiconductor layer that is grown on the surface of the buffer layer.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 7, 2015
    Assignees: The University of Tokyo, Tokai Carbon Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Fujioka, Tetsuro Hirasaki, Hitoshi Ue, Junya Yamashita, Hiroaki Hatori
  • Patent number: 8728432
    Abstract: A method of producing a surface-treated carbon black powder dispersion includes subjecting carbon black fine particles having a volume average particle size of 100 nm to 20 ?m to wet granulation and drying by heating to obtain granulated carbon black having a hardness of 12 cN or less and a pH of less than 7, grinding the granulated carbon black to obtain a ground product having a volume average particle size of 20 nm to 20 ?m, and subjecting the ground product to wet oxidization in an aqueous medium. The resulting surface-treated carbon black powder dispersion exhibits excellent print density, print quality, discharge stability, and storage stability when used as an inkjet printer aqueous black ink.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Tokai Carbon Co., Ltd.
    Inventors: Hironori Arai, Masanobu Maeda
  • Patent number: 8709147
    Abstract: A method for producing a surface-treated carbon black particle aqueous dispersion that exhibits excellent blackness and dispersibility, exhibits excellent storage stability, suppresses feathering, exhibits an excellent discharge capability and rubfastness (quick-drying capability), and suppresses metal corrosion when used in an aqueous black pigment (colorant) ink, is disclosed. The method for producing a surface-treated carbon black particle aqueous dispersion includes providing an aqueous dispersion of oxidized carbon black particles obtained by forming acidic hydroxyl groups on a surface of carbon black particles having a DBP absorption of 120 cm3/100 g or more, neutralizing 5% or more and less than 50% of the acidic hydroxyl groups with a polyvalent cation, and neutralizing the remainder of the acidic hydroxyl groups with a monovalent cation.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 29, 2014
    Assignee: Tokai Carbon Co., Ltd.
    Inventors: Makoto Sekiyama, Tetsuya Saitoh, Tomoaki Kirino
  • Publication number: 20140000488
    Abstract: A method for producing a surface-treated carbon black particle aqueous dispersion that exhibits excellent blackness and dispersibility, exhibits excellent storage stability, suppresses feathering, exhibits an excellent discharge capability and rubfastness (quick-drying capability), and suppresses metal corrosion when used in an aqueous black pigment(colorant) ink, is disclosed. The method for producing a surface-treated carbon black particle aqueous dispersion includes providing an aqueous dispersion of oxidized carbon black particles obtained by forming acidic hydroxyl groups on a surface of carbon black particles having a DBP absorption of 120 cm3/100 g or more, neutralizing 5% or more and less than 50% of the acidic hydroxyl groups with a polyvalent cation, and neutralizing the remainder of the acidic hydroxyl groups with a monovalent cation.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 2, 2014
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Makoto Sekiyama, Tetsuya Saitoh, Tomoaki Kirino
  • Publication number: 20130338319
    Abstract: A method for producing a pigment dispersion composition having excellent image density, dispersibility, and storage stability, has high resolubility, and forms an ink film having excellent marker resistance and scratch resistance. The method includes bringing a pigment (I) having a surface acidic group and a basic compound (II) having two or more amino groups selected from a primary amino group and a secondary amino group in its molecule, into contact with each other in an aqueous medium to prepare a pigment having an unreacted surface amino group, bringing the pigment into contact with a polyisocyanate polyurethane resin (III) having two or more isocyanate end groups so that the pigment and the polyisocyanate polyurethane resin are bonded via a urea bond to prepare a dispersion of a polyurethane resin-bonded pigment (A), and heating the dispersion of the polyurethane resin-bonded pigment (A) at 40 to 100° C. for 1 to 30 days.
    Type: Application
    Filed: February 7, 2012
    Publication date: December 19, 2013
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Asami Takenaka, Shigehiro Tanaka, Yukari Ishibashi
  • Patent number: 8524129
    Abstract: A method of producing a fuel cell separator includes pressing a compact part-forming material that includes a carbonaceous powder and a thermosetting resin binder at a temperature equal to or higher than the softening temperature of the thermosetting resin binder and less than the curing temperature of the thermosetting resin binder to obtain a compact part-forming preformed sheet, preparing a porous part-forming powder that includes a carbonaceous powder and a thermosetting resin binder, placing the compact part-forming preformed sheet and the porous part-forming powder in a forming die that has a concave-convex forming surface corresponding to the shape of a gas passage so that the concave-convex forming surface faces the porous part-forming powder, and hot-pressing the compact part-forming preformed sheet and the porous part-forming powder using the forming die at a temperature equal to or higher than the curing temperature of the thermosetting resin binder included in the compact part-forming material or
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: September 3, 2013
    Assignee: Tokai Carbon Co., Ltd.
    Inventor: Kazuhiro Yamamoto
  • Publication number: 20130217826
    Abstract: A polyurethane resin-bonded pigment may exhibit excellent image density, dispersibility, storage stability, and resolubility, and may form an ink film that exhibits marker resistance and rubfastness. The polyurethane resin-bonded pigment is produced by bringing (I) a pigment having a surface acidic group into contact with (II) a basic compound having two or more amino groups selected from a primary amino group and a secondary amino group in its molecule in an aqueous medium to obtain a pigment having an unreacted surface amino group, and bringing the pigment having an unreacted surface amino group into contact with (III) a water-dispersible polyurethane resin having an isocyanate end group and (IV) a polyisocyanate compound to bond the pigment having an unreacted surface amino group and the water-dispersible polyurethane resin (III) having an isocyanate end group via a urea bond.
    Type: Application
    Filed: July 1, 2011
    Publication date: August 22, 2013
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Shigehiro Tanaka, Asami Takenaka, Yukari Ishibashi
  • Patent number: 8497317
    Abstract: A method of producing a polyurethane resin-bonded pigment aqueous dispersion includes causing (I) a pigment having a surface acidic group to come in contact with (II) a basic compound having two or more amino groups selected from a primary amino group and a secondary amino group in its molecule in an aqueous medium so that the pigment has an unreacted surface amino group, and causing the pigment to come in contact and react with (III) a polyurethane resin having an isocyanate end group. A polyurethane resin-bonded pigment aqueous dispersion produced by the method exhibits excellent image density, dispersibility, and storage stability.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: July 30, 2013
    Assignee: Tokai Carbon Co., Ltd.
    Inventors: Makoto Sekiyama, Shigehiro Tanaka
  • Publication number: 20130165584
    Abstract: A pigment that exhibits excellent image density, dispersibility, storage stability, and resolubility, and forms an ink film that exhibits marker resistance and rubfastness is provided. A polyurethane resin-bonded pigment is produced by bringing (I) a pigment having a surface acidic group into contact with (II) a water-dispersible polyurethane resin having a tertiary amino group and an anionic polar group or a nonionic polar chain in an aqueous medium. The pigment (I) is preferably self-dispersible carbon black having a surface acidic group.
    Type: Application
    Filed: May 30, 2011
    Publication date: June 27, 2013
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Yukari Ishibashi, Asami Takenaka, Shigehiro Tanaka
  • Patent number: 8404383
    Abstract: A negative electrode material for a nonaqueous secondary battery capable of realizing a nonaqueous secondary battery having a small charging/discharging irreversible capacity at an initial cycle and exhibiting an excellent high-rate charging/discharging characteristics and an excellent cycle performances is provided. The main component of the material is graphite particles. The median diameter is 5 ?m or more, and 40 ?m or less in the volume-basis particle size distribution based on the laser diffraction/scattering particle size distribution measurement. The tapping density is 0.7 g/cm3 or more. The specific surface area measured by a BET method is 0.2 m2/g or more, and 8 m2/g or less. The average circularity is 0.83 or more, and 1.00 or less. When an electrode is produced by a predetermined method for manufacturing an electrode and, the resulting electrode is subjected to X-ray diffraction, the graphite crystal orientation ratio I110/I004 on the electrode is 0.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: March 26, 2013
    Assignees: Mitsubishi Chemical Corporation, Tokai Carbon Co., Ltd.
    Inventors: Nobuyuki Onishi, Hideharu Satoh, Keita Yamaguchi
  • Publication number: 20130030108
    Abstract: Carbon black includes primary particles having an average particle size of 15 to 40 nm, microprotrusions having an average length of 2 to 10 nm being formed on a surface of the primary particles. A method for producing carbon black includes introducing an oxygen-containing gas and fuel into a fuel combustion zone, mixing and combusting the oxygen-containing gas and the fuel to produce a high-temperature combusted gas stream, introducing a raw material hydrocarbon in a first stage of a raw material introduction zone and introducing the raw material hydrocarbon and an oxygen-containing gas in a second stage of the raw material introduction zone while introducing the high-temperature combusted gas stream into the raw material introduction zone to produce a carbon black-containing gas which is introduced into a reaction termination zone while spraying a coolant.
    Type: Application
    Filed: February 1, 2011
    Publication date: January 31, 2013
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Ryusuke Harada, Takeshi Akahane
  • Publication number: 20120187422
    Abstract: A semiconductor substrate that includes a semiconductor layer that exhibits high crystallinity includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine, and a semiconductor layer that is grown on the surface of the graphite layer, or includes a substrate that includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine on its surface, a buffer layer that is grown on the surface of the graphite layer, and a semiconductor layer that is grown on the surface of the buffer layer.
    Type: Application
    Filed: September 7, 2010
    Publication date: July 26, 2012
    Applicants: TOKAI CARBON CO., LTD., THE UNIVERSITY OF TOKYO
    Inventors: Hiroshi Fujioka, Tetsuro Hirasaki, Hitoshi Ue, Junya Yamashita, Hiroaki Hatori
  • Publication number: 20120190789
    Abstract: A method of producing a polyurethane resin-bonded pigment aqueous dispersion includes causing (I) a pigment having a surface acidic group to come in contact with (II) a basic compound having two or more amino groups selected from a primary amino group and a secondary amino group in its molecule in an aqueous medium so that the pigment has an unreacted surface amino group, and causing the pigment to come in contact and react with (III) a polyurethane resin having an isocyanate end group. A polyurethane resin-bonded pigment aqueous dispersion produced by the method exhibits excellent image density, dispersibility, and storage stability.
    Type: Application
    Filed: September 1, 2010
    Publication date: July 26, 2012
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Makoto Sekiyama, Shigehiro Tanaka
  • Publication number: 20120171104
    Abstract: A method of producing a surface-treated carbon black powder dispersion includes subjecting carbon black fine particles having a volume average particle size of 100 nm to 20 ?m to wet granulation and drying by heating to obtain granulated carbon black having a hardness of 12 cN or less and a pH of less than 7, grinding the granulated carbon black to obtain a ground product having a volume average particle size of 20 nm to 20 ?m, and subjecting the ground product to wet oxidization in an aqueous medium. The resulting surface-treated carbon black powder dispersion exhibits excellent print density, print quality, discharge stability, and storage stability when used as an inkjet printer aqueous black ink.
    Type: Application
    Filed: July 9, 2010
    Publication date: July 5, 2012
    Applicant: TOKAI CARBON CO., LTD.
    Inventors: Hironori Arai, Masanobu Maeda
  • Publication number: 20120161352
    Abstract: A method of producing a fuel cell separator includes pressing a compact part-forming material that includes a carbonaceous powder and a thermosetting resin binder at a temperature equal to or higher than the softening temperature of the thermosetting resin binder and less than the curing temperature of the thermosetting resin binder to obtain a compact part-forming preformed sheet, preparing a porous part-forming powder that includes a carbonaceous powder and a thermosetting resin binder, placing the compact part-forming preformed sheet and the porous part-forming powder in a forming die that has a concave-convex forming surface corresponding to the shape of a gas passage so that the concave-convex forming surface faces the porous part-forming powder, and hot-pressing the compact part-forming preformed sheet and the porous part-forming powder using the forming die at a temperature equal to or higher than the curing temperature of the thermosetting resin binder included in the compact part-forming material or
    Type: Application
    Filed: May 27, 2010
    Publication date: June 28, 2012
    Applicant: TOKAI CARBON CO., LTD.
    Inventor: Kazuhiro Yamamoto
  • Patent number: 8153303
    Abstract: A negative electrode material for lithium ion secondary batteries includes core-shell composite particles prepared by covering the surface of a graphite powder with an amorphous carbon powder via a carbide of binder pitch, the graphite powder having an average particle diameter of 5 to 30 ?m and an average lattice spacing d(002) of less than 0.3360 nm, and the amorphous carbon powder having an average particle diameter of 0.05 to 2 ?m and an average lattice spacing d(002) of 0.3360 nm or more. A method to produce the negative electrode material includes mixing a graphite powder with pitch having a softening point of 70 to 250° C., adding an amorphous carbon powder to the resulting product, kneading the mixture while applying a mechanical impact to soften the pitch and carbonizing the pitch by heat treatment of the mixture at 750 to 2250° C. in a non-oxidizing atmosphere.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 10, 2012
    Assignee: Tokai Carbon Co., Ltd.
    Inventor: Kenta Ishii