Abstract: A high conductance, multi-tray film precursor evaporation system coupled with a high conductance vapor delivery system is described for increasing deposition rate by increasing exposed surface area of film precursor. The multi-tray film precursor evaporation system includes one or more trays. Each tray is configured to support and retain a solid precursor, and permit the flow of a carrier gas. Furthermore, each tray comprises precursor stabilization elements designed to maintain a substantially level solid precursor powder during transport of the multi-tray precursor evaporation system.
Abstract: A method for forming an interconnect structure for copper metallization and an interconnect structure containing a metal nitride diffusion barrier are described. The method includes providing a substrate having a micro-feature opening formed within a dielectric material and forming a metal nitride diffusion barrier containing ruthenium, nitrogen, and a nitride-forming metal over the surfaces of the micro-feature. The nitride-forming metal is selected from Groups IVB, VB, VIB, and VIIB of the Periodic Table, and the metal nitride diffusion barrier is formed by exposing the substrate to a precursor of the nitride-forming metal, a nitrogen precursor, and a ruthenium precursor.
Abstract: A method of synthesizing a nucleotide-labeled microtubule includes causing a microtubule which is stabilized after polymerization to react with a chemical crosslinking agent which has succinimide and maleimide and nucleotides which have a thiolated 3? end or 5? end to synthesize a microtubule-chemical crosslinking agent-nucleotide complex.
Type:
Application
Filed:
February 27, 2008
Publication date:
August 28, 2008
Applicants:
NTT DoCoMo, Inc., The University of Tokyo
Abstract: In an elevating device for raising and lowering a heavy member by rotating a rotation axis extending in a direction crossing a vertical direction, the rotation axis has one end portion to which the heavy member is connected. The rotation axis includes a bendable portion adapted to transmit a rotational force. A leading end portion of the free end portion is vertically suspended from the bendable portion of the rotation axis regardless of a stop position of the rotation axis. A rotation applied by the heavy member to the rotation axis is suppressed by the suspended leading end portion. With such an elevating device, unexpected rotation of the rotation axis is positively suppressed in a cost-effective manner.
Abstract: A method for monitoring photolithography processing includes monitoring application of a light sensitive material to the surface of each of a plurality of substrates and detecting that a supply of the light sensitive material applied to the substrates has changed from a first batch of light sensitive material to a second batch light sensitive material. A change in photolithography process results caused by the change from the first batch to the second batch of light sensitive material is determined. Also included is initiating corrective action based on the change in photolithography process results.
Abstract: A substrate processing apparatus and a substrate processing method are provided wherein an oxide film which is thinner than the conventional films can be formed with uniform thickness when forming an oxide film on the front-side surface of a substrate. A substrate processing apparatus (12) for processing a substrate (W) by feeding a processing liquid comprises: a temperature regulator (133) to regulate the temperature of said processing liquid; and a underplate temperature adjuster (115) to adjust the temperature of an underplate (77) which is placed in proximity to the backside surface of said substrate W.
Abstract: A positive resist composition capable of forming a resist pattern having excellent shape is provided. This composition is a positive resist composition including a base resin component (A) and an acid generator component (B) generating an acid under exposure, which are dissolved in an organic solvent, wherein the base resin component (A) is a silicone resin, and the organic solvent contains propylene glycol monomethyl ether (x1) and a solvent (S2) having a boiling point higher than that of the propylene glycol monomethyl ether.
Type:
Grant
Filed:
March 28, 2005
Date of Patent:
August 26, 2008
Assignee:
Tokyo Ohka Kogyo Co., Ltd.
Inventors:
Daisuke Kawana, Tomotaka Yamada, Takayuki Hosono, Koki Tamura
Abstract: After silicon nitride films have been formed on wafers by a film forming process in a reaction vessel, the reaction vessel is processed by a purging process specified by a purging recipe and compatible with the film forming process to suppress production of gases and particles by removing surface parts of films deposited on the inside surface of the reaction vessel and causative of production of gases and particles. A wafer boat 25 holding a plurality of wafers W is loaded into a reaction vessel 2, and the wafers W are processed by a film forming process specified by a film forming recipe 1 specifying, for example, Si2Cl2 gas and NH3 gas as film forming gases. Subsequently, a purging recipe 1 specifying a purging process compatible to the film forming process is selected automatically, and the reaction vessel 2 is processed by the purging process specified by the purging recipe 1.
Abstract: A prober for measuring the electrical characteristics of a test target object includes a tester, stage, probe card, first sensor, second sensor, and controller. The stage places a test target object thereon. The test target object has a plurality of electrical circuit devices on its surface. Each of the electrical circuit devices has a plurality of electrodes on its surface. The probe card is arranged above the stage. The probe has a plurality of probes. The probes are connected to the tester. The first sensor detects the positions of distal ends of the probes. The second sensor detects the surface position of an individual one of the electrical circuit devices. The controller brings the probes of the probe card and the electrodes of the electrical circuit devices into contact with each other.
Abstract: The present invention is a planarization apparatus for planarizing a coating film applied on a substrate before the coating film is hardened, including a contact body such as a brush or sponge brought into contact with a front surface of the coating film on the substrate; and a contact body drive mechanism for pressing the contact body against the front surface of the coating film and moving the contact body along the front surface of the coating film. The contact body is pressed against the coating film before it is hardened, and moved along the front surface of the coating film, whereby the coating film can be planarized to a predetermined film thickness. According to the present invention, the coating film can be planarized without using the CMP apparatus.
Abstract: A particle monitoring apparatus including a light source configured to emit plural light fluxes, a projecting optical system configured to convert the plural light fluxes into a band-shaped light flux, to lead the band-shaped light flux into a flow passage of a given gas stream, and to partially superpose the plural light fluxes to form a substantially uniform light intensity distribution of the band-shaped light flux in a widthwise direction; a light detector configured to detect intensity of light; and a particle detector configured to determine sizes of the particles passing the light flux based on intensities of the scattered lights detected by the light detector and to count the number of the particles.
Type:
Grant
Filed:
November 14, 2005
Date of Patent:
August 26, 2008
Assignees:
Kabushiki Kaisha TOPCON, Tokyo Electron Limited
Abstract: An exhaust assembly is described for use in a plasma processing system, whereby secondary plasma is formed in the exhaust assembly between the processing space and chamber exhaust ports in order to reduce plasma leakage to a vacuum pumping system, or improve the uniformity of the processing plasma, or both. The exhaust assembly includes a powered exhaust plate in combination with a ground electrode is utilized to form the secondary plasma surrounding a peripheral edge of a substrate treated in the plasma processing system.
Abstract: A vertical type of thermal processing apparatus of the present invention includes a thermal processing furnace having a furnace opening at a lower portion thereof. A boat holding objects to be processed in a tier-like manner in a vertical direction is adapted to be contained in the thermal processing furnace through the furnace opening. A lid supporting the boat is capable of closing the furnace opening. A transferring chamber is connected to the furnace opening. An elevating mechanism provided in the transferring chamber is configured to move up and down the lid in order to load and unload the boat into and out from the thermal processing furnace. A connecting port provided at a wall of the transferring chamber is capable of being connected to an opening of a conveying container for containing the objects to be processed. A first containing portion provided in the transferring chamber is capable of temporarily containing unprocessed objects to be processed for a next thermal process.
Abstract: A gas supply member is disposed in a chamber of a plasma processing apparatus and has a planar surface facing an inner space of the chamber and a plurality of gas holes bored in the planar surface to supply a gas through the gas holes to the inner space. An outer periphery portion of each gas hole at the planar surface has a slant surface formed to correspond to a flow of the gas injected through each gas hole. Further, the slant surface includes at least any one of a flat surface and a curved surface. An angle formed between the slant surface and the planar surface is equal to or greater than that formed between the planar surface and a distribution of the gas injected through each gas hole.
Abstract: This invention includes a first filter (27) connected between a susceptor (21) and ground and having a variable impedance, a sensor (28) for detecting an electrical signal based on the state of a plasma (P) generated in a process chamber (11), and a control means (36) for controlling the impedance of the first filter (27) on the basis of a detection result output from the sensor (28). Thus, a preferable plasma distribution to match the object of the plasma process can be realized.
Abstract: A plasma etching method for etching an etching target layer of a silicon layer through a mask of a silicon oxide film includes the following sequential steps of forming an opening in the silicon oxide film, wherein an opening dimension of a portion between a top and a bottom surface of the mask is enlarged compared to opening dimensions of the top and the bottom surface of the mask and etching the silicon layer by using a halogen containing gas. A gaseous mixture containing HBr gas, NF3 gas and O2 gas is used as the halogen containing gas. A hole or a trench having an opening diameter or an opening width equal to or smaller than 0.2 ?m is formed in the etching target layer. Further, a hole or a trench having an aspect ratio equal to or greater than forty is formed in the etching target layer.
Abstract: Structures formed on a semiconductor wafer are consecutively measured by obtaining first and second measured diffraction signals of a first structure and a second structure formed abutting the first structure. The first and second measured diffraction signals were consecutively measured using an angle-resolved spectroscopic scatterometer. The first measured diffraction signal is compared to a first simulated diffraction signal generated using a profile model of the first structure. The profile model has profile parameters, characterize geometries of the first structure, and an azimuth angle parameter, which define the angle between the plane of incidence beam and direction of periodicity of the first or second structure. One or more features of the first structure are determined based on the comparison.
Abstract: A bubble generator to bring out performance of a Doppler ultrasonic flowmeter to the maximum extent is provided. The bubble generator is provided with a bubble generation member generating bubbles suitable for a predetermined frequency of an ultrasonic pulse emitted into a fluid to be measured and feeding the bubbles into the fluid pipe, and a uniform dispersion member dispersing the bubbles fed uniformly in the pipe, the bubble generator is installed on an upstream side of the fluid pipe with respect to an ultrasonic transducer. The bubble generation member has a Venturi tube, and the uniform dispersion member has a negative pressure generating device, in which the fluid to be measured drawn out by the uniform dispersion member from inside the fluid pipe is returned into the fluid pipe together with the bubbles fed into the fluid pipe via the Venturi tube.
Type:
Grant
Filed:
May 26, 2004
Date of Patent:
August 26, 2008
Assignees:
The Tokyo Electric Power Company, Incorporated
Abstract: The temperature of the surface and/or inside of a substrate is measured by irradiating the front surface or rear surface of the substrate, whose temperature is to be measured, with light and measuring the interference of a reflected light from the substrate and a reference light. A method and apparatus for measuring temperature or thickness which is suitable for directly measuring the temperature of the outermost surface layer of a substrate, and an apparatus for treating a substrate for an electronic device, which uses such method, are provided.
Abstract: An in-chamber member to use in the chamber of a plasma processing vessel has a coating film formed by a coating agent. The in-chamber member having deposits formed on the coating film is separated from the chamber and is immersed into a peeling solvent, e.g., acetone. Since the coating agent is made of a resist formed of a main component of, e.g., cyclized rubber-bisazide and a photosensitive component, the deposits can be separated from the in-chamber member together with the coating film being separated.