Patents Assigned to Tower Semiconductor Ltd.
  • Publication number: 20130161264
    Abstract: A method and system for processing fluoride-containing wastewater includes treating the wastewater with brine (waste) created by the regeneration process implemented by in ion exchanging water softener. The brine, which is typically disposed of, contains both calcium and magnesium salts, in varying concentrations and ratios. The regeneration process brine is added to the fluoride-containing wastewater within a reaction tank, and the fluoride ion concentration is monitored. When the fluoride ion concentration falls below a predetermined level (e.g., 15 ppm), the flow of regeneration process brine is stopped. A pH controller monitors the pH within the reaction tank, and adds a basic agent to ensure that the pH remains above a predetermined level (e.g., pH>9). The pH control results in a clear effluent, and a sludge having a high settling rate and a high dewater ability.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Michael Lurie, Milan Shtal
  • Publication number: 20130127371
    Abstract: A modified bootstrap circuit utilized, for example, in a high voltage DC/DC CMOS buck converter to convert a high input voltage (e.g., 24V) to a regulated voltage (e.g., 4V) for use, for example, by an LED driver circuit. The bootstrap circuit utilizes a feedback diode and a PMOS switch to avoid high reverse diode voltages across a low voltage bootstrap diode. A bootstrapped buck converter implements the bootstrap circuit to generate a high gate voltage on a high-side NMOS switch during all operating phases. The PMOS switch is controlled by the NMOS switch's output voltage to pass a system voltage (e.g., 5V) through the bootstrap diode whenever the output voltage drops low (e.g., 0V), and to shut off when the output voltage subsequently rises such that the feedback diode forward biases to pass the output voltage to the anode of the bootstrap diode.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Erez Sarig, Raz Reshef
  • Publication number: 20130075803
    Abstract: Flash-to-ROM conversion is performed by converting single transistor flash memory cells to single transistor ROM cells. An S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into the channel region of the S-Flash memory cell. Alternately, an S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into a substrate region in alignment with an edge of the gate electrode of the S-Flash memory cell. The width of the mask through which this threshold voltage implant is performed can be varied, such that the threshold voltage implant region can have different dopant concentrations, thereby allowing multiple bits to be represented by the programmed ROM cell. In another embodiment, a Y-flash memory cell is converted to a programmed ROM cell by adjusting the length of a floating gate extension region of the Y-Flash memory cell.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Itzhak Edrei, Yakov Roizin
  • Publication number: 20130052803
    Abstract: A method for generating three-dimensional (3D) non-volatile memory (NVM) arrays includes forming multiple parallel horizontally-disposed mono-crystalline silicon beams that are spaced apart and arranged in a vertical stack (e.g., such that an elongated horizontal air gap is defined between each adjacent beam in the stack), forming separate charge storage layers on each of the mono-crystalline silicon beams such that each charge storage layer includes a high-quality thermal oxide layer that entirely covers (i.e., is formed on the upper, lower and opposing side surfaces of) each of the mono-crystalline silicon beams, and then forming multiple vertically-disposed poly-crystalline silicon wordline structures next to the stack such that each wordline structure is connected to each of the bitline structures in the stack by way of corresponding portions of the separate charge storage layers. The memory cells are accessed during read/write operations by way of the corresponding wordline and bitline structures.
    Type: Application
    Filed: February 2, 2012
    Publication date: February 28, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Avi Strum
  • Publication number: 20130051150
    Abstract: A three-dimensional (3D) non-volatile memory (NVM) array including spaced-apart horizontally-disposed bitline structures arranged in vertical stacks, each bitline structures including a mono-crystalline silicon beam and a charge storage layer entirely surrounding the beam. Vertically-oriented wordline structures are disposed next to the stacks such that each wordline structure contacts corresponding portions of the charge storage layers. NVM memory cells are formed at each bitline/wordline intersection, with corresponding portions of each bitline structure forming each cell's channel region. The bitline structures are separated by air gaps, and each charge storage layer includes a high-quality thermal oxide layer that entirely covers (i.e., is formed on the upper, lower and opposing side surfaces of) each of the mono-crystalline silicon beams.
    Type: Application
    Filed: February 2, 2012
    Publication date: February 28, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Avi Strum
  • Patent number: 8378407
    Abstract: A non-volatile memory (NVM) cell and array includes a control capacitor, tunneling capacitor, CMOS inverter and output circuit. The CMOS inverter includes PMOS and NMOS inverter transistors. The control capacitor, tunneling capacitor and PMOS and NMOS inverter transistors share a common floating gate, which is programmed/erased by Fowler-Nordheim tunneling. The output circuit includes PMOS and NMOS select transistors. The PMOS inverter and select transistors share a common source/drain region. Similarly, the NMOS inverter and select transistors share a common source/drain region. This configuration minimizes the required layout area of the non-volatile memory cell and allows design of arrays with smaller footprints. Alternately, the tunneling capacitor may be excluded, further reducing the required layout area of the NVM cell.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 19, 2013
    Assignee: Tower Semiconductor, Ltd.
    Inventors: Mikalai Audzeyeu, Yuriy Makarevich, Siarhei Shvedau, Anatoly Belous, Evgeny Pikhay, Vladislav Dayan, Yakov Roizin
  • Patent number: 8344440
    Abstract: A three terminal non-volatile memory (NVM) cell for a CMOS IC is formed by either a standard CMOS process flow or a slightly modified CMOS process flow. The NVM cell includes read and injection transistors that share a common floating gate. The floating gate includes a portion disposed over the channel region of the read transistor, a portion disposed over the channel region of the injection transistor, and a portion extending into an enlarged drain diffusion area away from the channel regions, whereby the gate-to-drain capacitance is higher than the gate-to-source capacitances. The source/drain of the injection transistor are formed using different LDD implants to achieve faster program/erase. Alternatively, an optional CHE enhancing implant is added to the source/drain of the injection transistor to enhance CHE programming. Both HV LDD and LV LDD implants are introduced together enabling LDD implant merging under the floating gate extension.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 1, 2013
    Assignee: Tower Semiconductor Ltd.
    Inventors: Evgeny Pikhay, Micha Gutman, Yakov Roizin
  • Patent number: 8344468
    Abstract: A photovoltaic device includes lateral P-I-N light-sensitive diodes respectively formed in portions of a planar semiconductor material (e.g., polycrystalline or crystalline silicon) layer that is entirely disposed on an insulating material (e.g., SiO2) layer utilizing, e.g., STI or SOI techniques. Each light-sensitive diode includes parallel elongated doped regions respectively formed by P+ and N+ dopant extending entirely through the semiconductor layer material and separated by an intervening elongated intrinsic (native) region. The light-sensitive diodes are connected in series by patterned conductive (e.g., metal film) structures. Optional bypass diodes are formed next to each lateral P-I-N light-sensitive diodes. Optional trenches are defined between adjacent light-sensitive diodes.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Evgeny Pikhay
  • Publication number: 20120292675
    Abstract: A photovoltaic device includes lateral P-I-N light-sensitive diodes respectively formed in portions of a planar semiconductor material (e.g., polycrystalline or crystalline silicon) layer that is entirely disposed on an insulating material (e.g., SiO2) layer utilizing, e.g., STI or SOI techniques. Each light-sensitive diode includes parallel elongated doped regions respectively formed by P+ and N+ dopant extending entirely through the semiconductor layer material and separated by an intervening elongated intrinsic (native) region. The light-sensitive diodes are connected in series by patterned conductive (e.g., metal film) structures. Optional bypass diodes are formed next to each lateral P-I-N light-sensitive diodes. Optional trenches are defined between adjacent light-sensitive diodes.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 22, 2012
    Applicant: TOWER SEMICONDUCTOR LTD.
    Inventors: YAKOV ROIZIN, EVGENY PIKHAY
  • Patent number: 8279328
    Abstract: A CMOS image sensor uses a special exposure control circuit to independently adjust the photodiode exposure (integration) time for each pixel in a pixel array to obtain non-saturated photodiode charges for each pixel. Exposure time adjustment involves extrapolating a pixel's final photodiode charge using an intermediate photodiode charge measured after a predetermined portion of an exposure frame period. If the intermediate photodiode charge is, e.g., over 50% of the photodiode's full-well capacity after half of the exposure frame period, then saturation is likely and the photodiode is reset to integrate only during the remaining time. If not, then the photodiode integrates over the allotted exposure frame period. Data indicating the length of the exposure portion is stored as analog data on the memory node of each pixel, and readout of the final photodiode charge is performed using Correlated Double Sampling (CDS) techniques.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 2, 2012
    Assignee: Tower Semiconductor Ltd.
    Inventors: Assaf Lahav, Amos Fenigstein
  • Patent number: 8203111
    Abstract: A CMOS image sensor in which each column of pixels is connected to a signal line that is coupled to a current source, and each pixel includes a charge amplifier having a common source configuration arranged such that a charge generated by its photodiode is amplified by the charge amplifier and transmitted to readout circuitry by way of the signal line. In one embodiment the charge amplifier utilizes an NMOS transistor to couple the photodiode charge in an inverted manner to the signal line while converting the charge to a voltage through a capacitor coupled between the signal line and photodiode (i.e., forming a feedback of the NMOS amplifier transistor).
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: June 19, 2012
    Assignee: Tower Semiconductor Ltd.
    Inventors: Raz Reshef, Amos Fenigstein, Tomer Leitner
  • Patent number: 8089035
    Abstract: A CMOS image sensor in which each pixel includes a conventional pinned diode (photodiode), a Wide Dynamic Range (WDR) detection (e.g., a simplified time-to-saturation (TTS)) circuit, a correlated double sampling (CDS) circuit, and a single output chain that is shared by both the CDS and WDR circuits. The pinned diode is used in the conversion of photons into charge in each pixel. In one embodiment, light received by the photodiode is processed using a TTS operation during the CDS integration phase, and the resulting TTS output signal is used to determine whether the photodiode is saturated. When the photodiode is saturated, the TTS output signal is processed to determine the amount of light received by the photodiode. When the photodiode is not saturated, the amount of light received by the photodiode is determined using signals generated by the readout phase of the CDS operation.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 3, 2012
    Assignee: Tower Semiconductor Ltd.
    Inventors: Assaf Lahav, Amos Fenigstein
  • Publication number: 20110121379
    Abstract: A three terminal non-volatile memory (NVM) cell for a CMOS IC is formed by either a standard CMOS process flow or a slightly modified CMOS process flow. The NVM cell includes read and injection transistors that share a common floating gate. The floating gate includes a portion disposed over the channel region of the read transistor, a portion disposed over the channel region of the injection transistor, and a portion extending into an enlarged drain diffusion area away from the channel regions, whereby the gate-to-drain capacitance is higher than the gate-to-source capacitances. The source/drain of the injection transistor are formed using different LDD implants to achieve faster program/erase. Alternatively, an optional CHE enhancing implant is added to the source/drain of the injection transistor to enhance CHE programming. Both HV LDD and LV LDD implants are introduced together enabling LDD implant merging under the floating gate extension.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 26, 2011
    Applicant: Tower Semiconductor Ltd.
    Inventors: Evgeny Pikhay, Micha Gutman, Yakov Roizin
  • Patent number: 7948020
    Abstract: An asymmetric non-volatile memory (NVM) cell for a CMOS IC formed by a standard CMOS process flow used to form both low voltage and high voltage transistors on a substrate. The NVM cell includes an NMOS floating gate transistor and an optional select transistor. The floating gate transistor includes an elongated floating gate having a first portion disposed over the channel region C150, a second portion extending into an enlarged drain diffusion area D150 away from the channel region, whereby the gate-to-drain capacitance is higher than the gate-to-source capacitance. The width of the floating gate extension portion is minimized, while both HV LDD and LV LDD implants are introduced together enabling LDD implant merging under the floating gate extension. HV LDD implant in the NVM transistor is replaced by LV LDD. The floating gate is formed using substantially U-shaped or J-shaped polysilicon structures. Various array addressing schemes are disclosed.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: May 24, 2011
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Evgeny Pikhay, Ishai Naveh
  • Publication number: 20110050874
    Abstract: A very small area CMOS image sensor, e.g., for an endoscopic system, includes only four pads (power, ground, digital in, analog out), and includes an array of 4T pixels and associated control circuitry for performing correlated double sampling (CDS) to generate analog reset level and analog signal level values associated with light detected by photodiodes in each pixel. Instead of processing the analog values on-chip, the analog reset values and analog signal values are transmitted in separate sets one row at a time along with interleaved synchronization signals by way of a single analog contact pad, e.g., to a host device of an endoscopic system, which uses the synchronization signals to reconstruct the sensor's internal clock in order to process the analog values. An endoscope housing incorporating the CMOS image sensor thus requires only four wires.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 3, 2011
    Applicant: Tower Semiconductor Ltd.
    Inventors: Raz Reshef, Erez Sarig, Aviad Haber, Shay Alfassi, Guy Yehudian
  • Publication number: 20110013064
    Abstract: A CMOS image sensor uses a special exposure control circuit to independently adjust the photodiode exposure (integration) time for each pixel in a pixel array to obtain non-saturated photodiode charges for each pixel. Exposure time adjustment involves extrapolating a pixel's final photodiode charge using an intermediate photodiode charge measured after a predetermined portion of an exposure frame period. If the intermediate photodiode charge is, e.g., over 50% of the photodiode's full-well capacity after half of the exposure frame period, then saturation is likely and the photodiode is reset to integrate only during the remaining time. If not, then the photodiode integrates over the allotted exposure frame period. Data indicating the length of the exposure portion is stored as analog data on the memory node of each pixel, and readout of the final photodiode charge is performed using Correlated Double Sampling (CDS) techniques.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Applicant: Tower Semiconductor Ltd.
    Inventors: Assaf Lahav, Amos Fenigstein
  • Patent number: 7859043
    Abstract: A three terminal non-volatile memory (NVM) cell for a CMOS IC is formed by a standard CMOS process flow. The NVM cell includes two transistors that share a common floating gate. The floating gate includes a first portion disposed over the channel region of the first (NMOS) transistor, a second portion disposed over the channel region of the second (NMOS or PMOS) transistor, and a third portion extending into an enlarged drain diffusion area away from the channel regions, whereby the gate-to-drain capacitance is higher than the gate-to-source capacitances. A pocket implant or CMOS standard LV N-LDD is formed under the second transistor to enhance CHE programming. Both HV LDD and LV LDD implants are introduced together enabling LDD implant merging under the floating gate extension. The floating gate is formed using substantially T-shaped, C-shaped, U-shaped, Y-shaped or O-shaped polysilicon structures. Various array addressing schemes are disclosed.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: December 28, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Evgeny Pikhay, Yakov Roizin
  • Publication number: 20100237228
    Abstract: A CMOS image sensor in which each column of pixels is connected to a signal line that is coupled to a current source, and each pixel includes a charge amplifier having a common source configuration arranged such that a charge generated by its photodiode is amplified by the charge amplifier and transmitted to readout circuitry by way of the signal line. In one embodiment the charge amplifier utilizes an NMOS transistor to couple the photodiode charge in an inverted manner to the signal line while converting the charge to a voltage through a capacitor coupled between the signal line and photodiode (i.e., forming a feedback of the NMOS amplifier transistor).
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicant: Tower Semiconductor Ltd.
    Inventors: Raz Reshef, Amos Fenigstein, Tomer Leitner
  • Patent number: 7800156
    Abstract: An asymmetric non-volatile memory (NVM) cell for a CMOS IC formed by a standard CMOS process flow used to form both low voltage and high voltage transistors on a substrate. The NVM cell includes an NMOS floating gate transistor and an optional select transistor. The floating gate transistor includes an elongated floating gate having a first portion disposed over the channel region C150, a second portion extending into an enlarged drain diffusion area D150 away from the channel region, whereby the gate-to-drain capacitance is higher than the gate-to-source capacitance. The width of the floating gate extension portion is minimized, while both HV LDD and LV LDD implants are introduced together enabling LDD implant merging under the floating gate extension. HV LDD implant in the NVM transistor is replaced by LV LDD. The floating gate is formed using substantially U-shaped or J-shaped polysilicon structures. Various array addressing schemes are disclosed.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 21, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Evgeny Pikhay, Ishai Naveh
  • Patent number: 7795087
    Abstract: A pre-metal dielectric structure of a single-poly EEPROM structure includes a UV light-absorbing film, which prevents the charge on a floating gate of the EEPROM structure from being changed in response to UV radiation. In one embodiment, the pre-metal dielectric structure includes a first pre-metal dielectric layer, an amorphous silicon layer located over the first pre-metal dielectric layer, and a second pre-metal dielectric layer located over the amorphous silicon layer.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 14, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Yossi Netzer, Ira Naot, Myriam Buchbinder, Avi Ben-Guigui