Patents Assigned to Trustees of Tufts College
  • Publication number: 20180217048
    Abstract: A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
    Type: Application
    Filed: December 22, 2017
    Publication date: August 2, 2018
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: DAVID R. WALT, KARRI LYNN MICHAEL-BALLARD
  • Patent number: 10034945
    Abstract: The present disclosure relates generally to compositions and methods for production of three-dimensional constructs with high mechanical strength and/or stiffness.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: July 31, 2018
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Fiorenzo Omenetto, Gary G. Leisk, Tim Jia-Ching Lo, Benjamin Partlow, Rosario Friedman
  • Publication number: 20180188260
    Abstract: As described below, the invention provides methods for localizing and quantifying the extent to which a molecule penetrates a cell.
    Type: Application
    Filed: November 20, 2017
    Publication date: July 5, 2018
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: JOSHUA KRITZER, LEILA PERARO
  • Patent number: 9993527
    Abstract: The present invention provides processes for producing porous silk fibroin scaffold material. The porous silk fibroin scaffold can be used for tissue engineering. The porosity of the silk fibroin scaffolds described herein can be adjusted as to mimic the gradient of densities found in natural tissue. Accordingly, methods for engineering of 3-dimensional tissue, e.g. bone and cartilage, using the silk fibroin scaffold material are also provided.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: June 12, 2018
    Assignees: TRUSTEES OF TUFTS COLLEGE, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: David L. Kaplan, Rina Sears, Gordana Vunjak-Novakovic, Lorenz Meinel
  • Patent number: 9987346
    Abstract: Purified Chlamydia major outer membrane protein (MOMP) has been observed to induce protection against genital and respiratory challenge in mice. MOMP contains variable domains that are highly immunogenic and elicit cross-serovar neutralizing monoclonal and polyclonal antibodies and T cell responses in animal and human models. Examples herein provide a method for vaccinating a subject against Chlamydia using a composition that is a recombinant Neisseria porin that contains at least one antigenic variable domain of Chlamydia. The variable domains are inserted into the amino acid sequence of the Neisseria porin at a position encoding a surface-exposed loop of the Neisseria porin. The vaccine further contains an adjuvant that induces a Th1 response greater than a Th2 response.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: June 5, 2018
    Assignees: Trustees of Tufts College, Boston Medical Center Corporation, The Regents of the University of California
    Inventors: Paola Massari, Guillermo Madico, Luis de la Maza
  • Patent number: 9986924
    Abstract: Provided herein are implantable biomedical devices and methods of administering implantable biomedical devices, making implantable biomedical devices, and using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: June 5, 2018
    Assignees: The Board of Trustees of the University of Illinois, Northwestern University, Trustees of Tufts College, The Trustees of the University of Pennsylvania
    Inventors: John A. Rogers, Dae-Hyeong Kim, Fiorenzo Omenetto, David L. Kaplan, Brian Litt, Jonathan Viventi, Yonggang Huang, Jason Amsden
  • Patent number: 9987243
    Abstract: The present invention provides for a novel lipokine, trans-C16:1n7-palmitoleate, which also serves as a biomarker for metabolic status. More specifically, low concentrations of trans-C16:1n7-palmitoleate the serum indicates a risk of metabolic disease. Additionally, administering trans C16:1n7-palmitoleate to a subject (via pharmaceutical, nutraceutical, or other means), positively impacts glucose metabolism.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: June 5, 2018
    Assignee: Trustees of Tufts College
    Inventors: Dariush Mozaffarian, Haiming Cao, Gokhan S. Hotamisligil
  • Publication number: 20180149653
    Abstract: The invention provides methods and compositions for distinguishing breast cancer.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 31, 2018
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: DAVID R. WALT, SHAZIA BAIG, STEPHANIE SCHUBERT
  • Publication number: 20180136203
    Abstract: A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: DAVID R. WALT, KARRI LYNN MICHAEL-BALLARD
  • Patent number: 9969134
    Abstract: A method of manufacturing a nanopatterned biopolymer optical device includes providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate with a nanopatterned surface, casting the biopolymer matrix solution on the nanopatterned surface of the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film on the substrate, where the solidified biopolymer film is formed with a surface having a nanopattern thereon. In another embodiment, the method also includes annealing the solidified biopolymer film. A nanopatterned biopolymer optical device includes a solidified biopolymer film with a surface having a nanopattern is also provided.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: May 15, 2018
    Assignee: Trustees of Tufts College
    Inventors: David Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb
  • Patent number: 9956297
    Abstract: Disclosed are proteasome inhibitors, fibroblast activation protein (FAP)-activated prodrugs of proteasome inhibitors, and pharmaceutically acceptable salts of the inhibitors and prodrugs. Also disclosed are related pharmaceutical compositions, and methods of using the inhibitors and prodrugs and compositions thereof, for example, in treating cancer or other cell proliferative diseases. In vitro and in vivo methods of quantifying the expression of FAP in a biopsy sample and a mammal, respectively, are also disclosed.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: May 1, 2018
    Assignee: Trustees of Tufts College
    Inventors: William W. Bachovchin, Hung-sen Lai, Sarah E. Poplawski
  • Patent number: 9952148
    Abstract: In one aspect, the present invention generally provides methods for characterizing mineralization of a material, e.g., a biomaterial, by illuminating the material with radiation and analyzing radiation scattered from the material in response to the illumination. For example, in some embodiments, a material can be illuminated with polarized radiation at a plurality of wavelengths and the elastically scattered radiation corresponding to two or more of those wavelengths can be collected at two polarizations: one parallel and the other perpendicular to the illumination polarization. A differential intensity of the scattered radiation at the two polarizations can be analyzed as a function of wavelength to obtain information regarding the morphology of mineral deposits in the sample. Further, the total scattered radiation can be analyzed to derive information regarding the level of mineralization.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 24, 2018
    Assignee: Trustees of Tufts College
    Inventors: Irene Georgakoudi, Sharad Gupta, Martin Hunter, David L. Kaplan
  • Patent number: 9936574
    Abstract: Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 3, 2018
    Assignees: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, TRUSTEES OF TUFTS COLLEGE
    Inventors: John A. Rogers, Rak-Hwan Kim, Dae-Hyeong Kim, David L. Kaplan, Fiorenzo G. Omenetto
  • Patent number: 9931434
    Abstract: The inventions provided herein relate to compositions, methods, delivery devices and kits for repairing or augmenting a tissue in a subject. The compositions described herein are injectable such that they can be placed in a tissue to be treated with a minimally-invasive procedure (e.g., by injection) and/or be molded flexibly into a tissue void of any shape and/or size. In some embodiments, the composition described herein comprises a plurality of silk fibroin particles, which can retain their original volume within the tissue for a period of time. The compositions can be used as a filler to replace a tissue void, e.g., for tissue repair and/or augmentation, or as a scaffold to support tissue regeneration and/or reconstruction. In some embodiments, the compositions described herein can be used for soft tissue repair or augmentation.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 3, 2018
    Assignees: Trustees of Tufts College, University of Pittsburgh of the Commonwealth System of Higher Education, Wake Forest University Health Sciences
    Inventors: Evangelia Bellas, Kacey Marra, J. Peter Rubin, David L. Kaplan, James J. Yoo
  • Patent number: 9925301
    Abstract: Provided herein relates to methods for preparing micron range silk fibers (or silk microfibers) and compositions comprising a micron range silk fiber (or a silk microfiber). The micron range silk fibers (or silk microfibers) can be used in various applications ranging from fillers in cosmetics to reinforcement materials to design high strength composites, e.g., reinforced scaffolds. In some embodiments, the silk microfiber-reinforced scaffolds can be used for bone graft applications because of their high compressive strength.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: March 27, 2018
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Biman B. Mandal
  • Publication number: 20180044643
    Abstract: Provided herein are compositions and methods for vaccination and research applications. In particular, provided herein are non-neuroinvasive herpesviruses and alpha herpesviruses and uses thereof.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 15, 2018
    Applicants: Northwestern University, Board of Regents of the University of Nebraska, Trustees of Tufts College (AKA Tufts University)
    Inventors: Gregory A. Smith, Patricia Jane Sollars, Gary Edward Pickard, Ekaterina E. Heldwein
  • Patent number: 9868755
    Abstract: Provided are methods for the efficient stereoselective formation of glycosidic bonds, without recourse to prosthetic or directing groups.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: January 16, 2018
    Assignee: Trustees of Tufts College
    Inventors: Clay S. Bennett, John P. Issa, Dina Lloyd
  • Patent number: 9839646
    Abstract: Disclosed is a method of treating cancer, comprising administering to a mammal in need thereof a therapeutically effective amount of a compound that inhibits a plurality of mammalian DASH serine proteases. Also disclosed is a method of (a) increasing antitumor immunity, (b) stimulating or enhancing an immune response, (c) treating a condition characterized by abnormal cell proliferation, (d) increasing cytokine and/or chemokine production, or (e) stimulating or enhancing production of T-cells, in a mammal, comprising administering to a mammal in need thereof an effective amount of a compound that inhibits a plurality of mammalian DASH serine proteases. For example, the compound that inhibits a plurality of mammalian DASH serine proteases may be t-butylGly-boroPro.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 12, 2017
    Assignee: Trustees of Tufts College
    Inventor: William W. Bachovchin
  • Publication number: 20170320040
    Abstract: Methods and kits for the removal of organic contaminants from contaminated samples are generally provided. In some embodiments, the methods and kits comprise a surfactant and adsorbent particles.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 9, 2017
    Applicant: Trustees of Tufts College
    Inventors: Albert Robbat, JR., Nicholas M. Wilton, Christian David Zeigler
  • Patent number: 9809838
    Abstract: Disclosed is a method for measuring the concentration of an analyte or analytes in a solution. Although the methods can be conducted using a number of different assay formats, in one embodiment, the assays are conducted in reaction vessels defined, at least in part, by the distal ends of fiber optic strands.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: November 7, 2017
    Assignee: Trustees of Tufts College
    Inventors: David R. Walt, David M. Rissin