Patents Assigned to Trustees of Tufts College
  • Patent number: 10662409
    Abstract: In some embodiments, the present invention provides methods including the steps of providing one or more human somatic cells, causing transient increased expression of OCT4, KLF4, SOX2, and cMYC in the somatic cells forming modified somatic cells, providing a plurality of inactivated embryonic fibroblasts, associating the modified somatic cells with the inactivated embryonic fibroblasts in a culture media comprising 20% KO DMEM xeno-free serum replacement and at least 15 ng/ml recombinant bFGF to form human induced neural stem cells.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 26, 2020
    Assignee: Trustees of Tufts College
    Inventors: Dana Cairns, David L. Kaplan
  • Patent number: 10653786
    Abstract: Provided herein relates to compositions and methods for lubrication of a surface. The surface amenable to the compositions and methods described herein can be a non-biological surface, a biological surface, or a combination thereof. In some embodiments, the composition comprising a phospholipid-coated silk microsphere can be used for lubrication of a surface. In some embodiments, the composition comprising a phospholipid-coated silk microsphere can be used for joint lubrication, e.g., for treatment of joint disorders such as arthritis.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 19, 2020
    Assignees: TRUSTEES OF TUFTS COLLEGE, Tulane Educational Fund
    Inventors: David L. Kaplan, Xiaoqin Wang, Vijay John, Noshir Pesika, Rubo Zheng
  • Patent number: 10647964
    Abstract: Provided herein are compositions and methods for vaccination and research applications. In particular, provided herein are non-neuroinvasive herpesviruses and alpha herpesviruses and uses thereof.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 12, 2020
    Assignees: Northwestern University, Board of Regents of the University of Nebraska, Trustees of Tufts College
    Inventors: Gregory A. Smith, Patricia Jane Sollars, Gary Edward Pickard, Ekaterina E. Heldwein
  • Publication number: 20200123498
    Abstract: The disclosure provides methods and compositions for affecting the development of antigen presenting cell (APC, e.g., a macrophage or dendritic cell). The methods include maturing an APC, promoting anti-inflammatory phenotype, promoting development of a T regulatory cell (Treg) from a naive T cell. The methods generally include exposing an APC to a tryptophan derived microbiota metabolite (TDMM), such as an anti-inflammatory or pro-mucosal TDMM, and permitting the APC to mature. In some embodiments, the conditioned APC is exposed to a naive T cell to further promote development of a T regulatory cell (Treg). In some embodiments, the TDMM is selected from the group consisting of indole, indole-3-acetate, 5-hydroxyindole, and indole-3-pyruvate.
    Type: Application
    Filed: March 17, 2017
    Publication date: April 23, 2020
    Applicants: THE TEXAS A&M UNIVERSITY SYSTEM, TRUSTEES OF TUFTS COLLEGE
    Inventors: Robert C. Alaniz, Arul Jayaraman, Kyongbum Lee
  • Patent number: 10620214
    Abstract: As described below, the invention provides methods for localizing and quantifying the extent to which a molecule penetrates a cell.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: April 14, 2020
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: Joshua Kritzer, Leila Peraro
  • Patent number: 10603637
    Abstract: A two-layer photo-responsive membrane including a polymer layer and a support layer, the polymer layer being disposed on a surface of the support layer. The polymer layer is formed of a graft copolymer that contains a hydrophobic backbone and multiple side chains, the side chains each consisting of repeat units that switch between a hydrophobic form and a hydrophilic form upon exposure to a light of a specific wavelength. The polymer layer has a molecular weight cut-off of 3,000 to 250,000 Daltons and a thickness of 50 nm to 10 ?m; and the support layer has a molecular weight cut-off of 50 to 250,000 Daltons. Also disclosed is a method of preparing this two-layer photo-responsive membrane.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: March 31, 2020
    Assignee: Trustees of Tufts College
    Inventors: Ayse Asatekin Alexiou, Samuel Thomas, Papatya Kaner, Xiaoran Hu
  • Patent number: 10583090
    Abstract: The present invention provided for a novel process of forming silk fibroin gels, and controlling the rate of ?-sheet formation and resulting hydrogelation kinetics, by vortex treatment of silk fibroin solution. In addition, the vortex treatment of the present invention provides a silk fibroin gel that may be reversibly shear-thinned, enabling the use of these approach for precise control of silk self-assembly, both spatially and temporally. Active agents, including biological materials, viable cells or therapeutic agents, can be encapsulated in the hydrogels formed from the processes, and be used as delivery vehicles. Hence, the present invention provide for methods for silk fibroin gelation that are useful for biotechnological applications such as encapsulation and delivery of active agents, cells, and bioactive molecules.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: March 10, 2020
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Tuna Yucel
  • Patent number: 10548981
    Abstract: The present invention provides for novel sustained release silk-based delivery systems. The invention further provides methods for producing such formulations. In general, a silk fibroin solution is combined with a therapeutic agent to form a silk fibroin article. The article is then treated in such a way as to alter its conformation. The change in conformation increases its crystallinity or liquid crystallinity, thus controlling the release of a therapeutic agent from the formulation. This can be accomplished as single material carriers or in a layer-by-layer fashion to load different therapeutic agents or different concentrations of these agents in each layer.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: February 4, 2020
    Assignees: EIDGENOSSISCHES TECHNISCHE HOCHSCHULE (THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY), TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Lorenz Meinel
  • Publication number: 20200030303
    Abstract: Identified compounds demonstrate protein kinase inhibitory activity and inhibition of dependent cell signaling pathways, such as NOD2 cell signaling. More specifically, the compounds are demonstrated to inhibit receptor interacting kinase 2 (RIPK2) and/or Activin-like kinase 2 (ALK2). Compounds that are either dual RIPK2/ALK2 inhibitors or that preferentially inhibit RIPK2 or ALK2 could provide therapeutic benefit.
    Type: Application
    Filed: March 29, 2018
    Publication date: January 30, 2020
    Applicants: UNIVERSITY OF HOUSTON SYSTEM, TRUSTEES OF TUFTS COLLEGE
    Inventors: Gregory Cuny, Chalada Suebsuwong, Alexei Degterev
  • Publication number: 20200032326
    Abstract: Described herein are ultrasensitive methods to detect the presence and/or measure the levels of short target nucleic acids, such as microRNAs, in a sample. Such a method can involve the use of a capture probe and a detection probe, each of which is complementary to a segment of the short target nucleic acid. The capture probe and a detection probe may be hybridized with the target nucleic acid in the sample and the complex thus formed can be detected, for example, by a single molecular array assay.
    Type: Application
    Filed: May 29, 2019
    Publication date: January 30, 2020
    Applicant: Trustees of Tufts College
    Inventors: David R. Walt, Limor Cohen, Mark Hartman
  • Patent number: 10533037
    Abstract: The invention discloses a freeze-dried powder of high molecular weight silk fibroin, preparation process and use thereof. The freeze-dried powder is obtained from silk by degumming, dissolution, dialysis, centrifugation, high temperature and high pressure treatment and freeze-drying. A method of preparing silk fibroin microspheres with polyethylene glycol comprises mixing a silk fibroin solution of 1-30 wt % with a PEG solution of 10-60 w % and incubating the resulting solution. A controlled-release or sustained-release silk fibroin gel formulation includes a gel-state carrier and a drug dispersed/adsorbed therein, the carrier is a silk fibroin gel formed by blending with LMW-PEG.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: January 14, 2020
    Assignees: SIMATECH INCORPORATION, TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jian Liu, Jianbing Wu, Cheng Qian, Zhaozhu Zheng, Shaozhe Guo, Fuxin Shi, David Kaplan
  • Patent number: 10525424
    Abstract: A graft copolymer including zwitterionic repeat units and hydrophobic repeat units, in which the zwitterionic repeat units constitute 2-60 wt % of the graft copolymer and each of the hydrophobic repeat units is characterized in that a homopolymer formed thereof is miscible with polyvinylidene fluoride, polysulfone, poly ether sulfone, polyvinyl chloride, or polyacrylonitrile, each of the hydrophobic repeat units not being a repeat unit of polyvinylidene fluoride. Also disclosed is a filtration membrane containing such a graft copolymer or a statistical copolymer that includes the same composition of repeat units as the graft copolymer. Further disclosed are methods of preparing the graft copolymer and the filtration membrane.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 7, 2020
    Assignee: Trustees of Tufts College
    Inventors: Ayse Asatekin Alexiou, Papatya Kaner, Chiara Vannucci
  • Patent number: 10517955
    Abstract: Disclosed are proteasome inhibitors, fibroblast activation protein (FAP)-activated prodrugs of proteasome inhibitors, and pharmaceutically acceptable salts of the inhibitors and prodrugs. Also disclosed are related pharmaceutical compositions, and methods of using the inhibitors and prodrugs and compositions thereof, for example, in treating cancer or other cell proliferative diseases. In vitro and in vivo methods of quantifying the expression of FAP in a biopsy sample and a mammal, respectively, are also disclosed.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 31, 2019
    Assignee: Trustees of Tufts College
    Inventors: William W. Bachovchin, Hung-sen Lai, Sarah E. Poplawski
  • Patent number: 10513480
    Abstract: A method of converting methane to an oxygenate. The method includes converting methane to an oxygenate with a transition metal ion loaded zeolite catalyst in an aqueous medium in the presence of gaseous O2 and CO at a temperature lower than 200° C. Also disclosed are a two-metal ion zeolite catalyst for converting methane to methanol and a method for preparing the two-metal ion zeolite catalyst.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: December 24, 2019
    Assignee: Trustees of Tufts College
    Inventors: Junjun Shan, Maria Flytzani-Stephanopoulos, Mengwei Li
  • Publication number: 20190382443
    Abstract: Disclosed herein are cyclic peptides that induce cellular autophagy and have significant cell penetration activity. Methods for inducing autophagy and thereby treating various diseases and conditions associated with impaired autophagy are provided.
    Type: Application
    Filed: March 17, 2017
    Publication date: December 19, 2019
    Applicants: TRUSTEES OF TUFTS COLLEGE, BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: JOSHUA KRITZER, BETH LEVINE, LEILA PERARO
  • Publication number: 20190378019
    Abstract: An intelligent system, such as an autonomous robot agent, includes systems and methods to learn various aspects about a task in response to instructions received from a human instructor, to apply the instructed knowledge immediately during task performance following the instruction, and to instruct other intelligent systems about the knowledge for performing the task. The learning is accomplished free of training the intelligent system. The instructions from the human instructor may be provided in a natural language format and may include deictic references. The instructions may be received while the intelligent system is online, and may be provided to the intelligent system in one shot, e.g., in a single encounter or transaction with the human instructor.
    Type: Application
    Filed: May 10, 2017
    Publication date: December 12, 2019
    Applicant: Trustees of Tufts College
    Inventors: Matthias J. Scheutz, Evan A. Krause
  • Patent number: 10493179
    Abstract: The present invention provides for compositions and methods for preparing aqueous insoluble, ductile, flexible silk fibroin films. The silk films comprise silk fibroin and about 10% to about 50% (w/w) glycerol, and are prepared by entirely aqueous processes. The ductile silk film may be further treated by extracting the glycerol from and re-drying the silk film. Active agents may be embedded in or deposited on the glycerol modified silk film for a variety of medical applications. The films may be shaped into 3-dimensional structures, or placed on support surfaces as labels or coatings. The glycerol modified silk films of the present invention are useful in variety of applications such as tissue engineering, medical devices or implants, drug delivery, and edible pharmaceutical or food labels.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 3, 2019
    Assignee: Trustees of Tufts College
    Inventors: Shenzhou Lu, Xiaoqin Wang, Fiorenzo Omenetto, David L. Kaplan
  • Patent number: 10478524
    Abstract: This invention relates to a lamellae tissue layer, comprising a grooved silk fibroin substrate comprising tissue-specific cells. The silk fibroin substrates provides an excellent means of controlling and culturing cell and extracellular matrix development. A multitude of lamellae tissue layers can be used to create a tissue-engineered organ, such as a tissue-engineered cornea. The tissue-engineered organ is non-immunogenic and biocompatible.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 19, 2019
    Assignee: TRUSTEES OF TUFTS COLLEGE
    Inventors: David L. Kaplan, Fiorenzo G. Omenetto, Jeffrey K. Marchant, Noorjahan Panjwani, Brian Lawrence
  • Patent number: 10447358
    Abstract: A multipath communication system forms a complex weighted compound signal for transmission through a channel environment wherein the compound signal includes a complex variable weighted compound signal related to a count of available antennas, a power constraint related to each said antenna, and a channel state characteristic.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: October 15, 2019
    Assignee: Trustees of Tufts College
    Inventor: Mai Vu
  • Publication number: 20190293655
    Abstract: Arrays of single molecules and methods of producing an array of single molecules are described. Arrays with defined volumes between 10 attoliters and 50 picoliters enable single molecule detection and quantitation.
    Type: Application
    Filed: February 27, 2019
    Publication date: September 26, 2019
    Applicant: Trustees of Tufts College
    Inventors: David R. Walt, David M. Rissin