Patents Assigned to Tsinghua University
  • Patent number: 11962182
    Abstract: An embodiment of the present disclosure discloses a wireless charging device comprising a wireless receiving module, a controller, a first charging module, and a second charging module. The wireless receiving module is configured to receive a wireless charging signal in response to the wireless charging device being in a wireless sensing area, transmit a state indication signal to the controller, receive a charging indication signal from the controller, and determine whether to transmit the wireless charging signal to the first charging module according to the charging indication signal.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: April 16, 2024
    Assignees: Nuctech Company Limited, Tsinghua University
    Inventors: Zhiqiang Chen, Yuanjing Li, Xianghao Wu, Yongning Chen
  • Patent number: 11961277
    Abstract: A method for detecting image information includes: acquiring at least one sample of image pair to be processed; calculating a reconstruction loss function of the second feature extraction model based on the first image samples and the first reconstructed image feature information; calculating an adversarial loss function of the third feature extraction model based on the second reconstructed image feature information and the first image samples; optimizing the first model parameters in the first feature extraction model based on the reconstruction and the adversarial loss function to generate the optimized first feature extraction model; inputting the acquired image pair to be processed into the optimized first feature extraction model to generate the difference information. The method reduces the first feature extraction model's dependence on the labeled data and improves the model's recognition efficiency and accuracy by using the samples without the labeled difference information.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: April 16, 2024
    Assignee: Tsinghua University
    Inventors: Gao Huang, Shiji Song, Haojun Jiang, Le Yang, Yiming Chen
  • Patent number: 11954592
    Abstract: The disclosure provides a collaborative deep learning method and a collaborative deep learning apparatus. The method includes: sending an instruction for downloading a global model to a plurality of user terminals; receiving a set of changes from each user terminal; storing the set of changes; recording a hash value of the set of changes into a blockchain; obtaining a storage transaction number from the blockchain for the hash value of the set of changes; sending the set of changes and the storage transaction number to the plurality of user terminals; receiving the set of target user terminals from the blockchain; updating the current parameters of the global model based on sets of changes corresponding to the set of target user terminals; and returning the sending the instruction, to update the global model until the global model meets a preset condition.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 9, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Ke Xu, Zhichao Zhang, Bo Wu, Qi Li, Songsong Xu
  • Patent number: 11954409
    Abstract: The present disclosure provides a method for planning a distribution network with reliability constraints based on a feeder corridor, including determining installation states of respective elements in the distribution network; determining an objective function, the objective function being an objective function of minimizing a total investment cost of the distribution network; obtaining fault-isolation-and-load-transfer time and fault recovery time in a case where the feeder segment of each feeder line that is contained in each feeder corridor fails; determining constraint conditions including reliability constraints; building a distribution network planning model according to the objective function and the constraints; and solving the distribution network planning model built to obtain optimal solutions as planning states and reliability indexes to plan the distribution network.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: April 9, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Wenchuan Wu, Boming Zhang, Zihao Li, Hongbin Sun, Bin Wang, Qinglai Guo
  • Patent number: 11954870
    Abstract: Provided are a three-dimensional reconstruction method, apparatus and system of a dynamic scene, a server and a medium. The method includes: acquiring multiple continuous depth image sequences of the dynamic scene, where the multiple continuous depth image sequences are captured by an array of drones equipped with depth cameras; fusing the multiple continuous depth image sequences to establish a three-dimensional reconstruction model of the dynamic scene; obtaining target observation points of the array of drones through calculation according to the three-dimensional reconstruction model and current poses of the array of drones; and instructing the array of drones to move to the target observation points to capture, and updating the three-dimensional reconstruction model according to multiple continuous depth image sequences captured by the array of drones at the target observation points.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: April 9, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Lu Fang, Mengqi Ji, Yebin Liu, Lan Xu, Wei Cheng, Qionghai Dai
  • Patent number: 11950763
    Abstract: Disclosed is a self-propelled soft robot body, including a tube which is internally and axially provided with a tube cavity, and at least one propelling structure, comprising a first driving unit, a second driving unit and a third driving unit, which are evenly fixed on a peripheral wall of the tube cavity, relative to an axis thereof, and along the axis of the tube; and the first driving unit, the second driving unit and the third driving unit are respectively telescopic along the axis of the tube; at least two support structures, with each two adjacent support structures having at least one propelling structure arranged therebetween, the support structures are fixedly connected with the propelling structure and arranged on the peripheral wall of the tube cavity.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: April 9, 2024
    Assignee: Tsinghua University
    Inventors: Hongen Liao, Boyu Zhang, Hexiang Wang, Tiantian Zhang
  • Publication number: 20240109993
    Abstract: The present disclosure relates to a copolymer A, which has (i) at least one repeating unit carrying an amide group and a carboxyl and/or its ammonium salt, (ii) at least one repeating unit derived from linear or branched C2-C18 ?-monoolefin, and (iii) at least one repeating unit derived from a monomer having at least two carbon-carbon unsaturated double bonds. The present disclosure also relates to an article comprising a component formed from the adhesive of the present invention.
    Type: Application
    Filed: January 7, 2021
    Publication date: April 4, 2024
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Wantai YANG, Yanbin HUANG
  • Patent number: 11947255
    Abstract: A method of making photolithography mask plate is provided. The method includes: providing a carbon nanotube composite structure, wherein the carbon nanotube composite structure comprises a carbon nanotube layer and a chrome layer coated on the carbon nanotube layer; locating the carbon nanotube composite structure on a substrate to expose partial surfaces of the substrate; and depositing a cover layer on the carbon nanotube composite structure.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 2, 2024
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 11945302
    Abstract: A low-floor electric axle assembly including: an axle housing, two hub motors, two planetary gear reducers, two hubs, a brake system, two C-shaped beams, and a suspension system. Mechanical mounting of the suspension system is compatible with a conventional axle. The axle housing has a left and right symmetrical dumbbell-shaped structure configured to bear a weight of a vehicle. The hub motors are inner rotor type motors and are separately arranged at two ends of the axle housing left and right symmetrically. The hub motors are arranged coaxially with two wheels respectively. Two hub motor rotors are connected to the planetary gear reducers respectively. Each of the planetary gear reducers is a single-stage planetary gear reducer. A sun gear of each of the planetary gear reducers receives power outputted by each of the hub motor. Two planetary gear reducer housings are power output ends connected to two rims respectively.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: April 2, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Jian-Qiu Li, Jia-Yi Hu, Liang-Fei Xu, Bing-Kun Cai, Hang Li
  • Patent number: 11948793
    Abstract: A method for making a field effect transistor includes providing a graphene nanoribbon composite structure. The graphene nanoribbon composite structure includes a substrate and a plurality of graphene nanoribbons spaced apart from each other. The substrate includes a plurality of protrusions spaced apart from each other, and one of the plurality of graphene nanoribbons is on the substrate and between two adjacent protrusions. An interdigital electrode is placed on the graphene nanoribbon composite structure, and the interdigital electrode covers the plurality of protrusions and is electrically connected to the plurality of graphene nanoribbons.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 2, 2024
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Tian-Fu Zhang, Li-Hui Zhang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 11949238
    Abstract: The disclosure provides a distributed dispatch method for ubiquitous power Internet of Things based on a transition matrix. The ubiquitous power Internet of Things includes generators. The method includes: S1, setting a marginal cost function of each of the generators, and extracting key cost parameters in the marginal cost function; S2, establishing an optimization model based on the key cost parameters of each of the generators and a communication topology of the ubiquitous power Internet of Things, and solving the optimization model to obtain an optimized transition matrix; and S3, generating a plan of a power output of each of the generators based on the optimized transition matrix and a distributed dispatch protocol to perform a distributed dispatch.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: April 2, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Xinfei Yan, Haiwang Zhong, Jianxiao Wang, Zhenfei Tan, Qing Xia, Chongqing Kang
  • Patent number: 11947261
    Abstract: A method of making photolithography mask plate is provided. The method includes: providing a carbon nanotube layer on a substrate; depositing a chrome layer on the carbon nanotube layer, wherein the chrome layer includes a first patterned chrome layer and a second patterned chrome layer, the first patterned chrome layer is located on the carbon nanotube layer, and the second patterned chrome layer is deposited on the substrate corresponding to holes of the carbon nanotube layer; transferring the carbon nanotube layer with the first patterned chrome layer thereon from the substrate to a base, and the carbon nanotube layer being in contact with the base; and depositing a cover layer on the first patterned chrome layer.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 2, 2024
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Yuan-Hao Jin, Dong An, Shou-Shan Fan
  • Patent number: 11943249
    Abstract: A cyberspace coordinate system creation method and apparatus based on an autonomous system is provided. The method includes: determining a cyberspace coordinate system; constructing a framework for a three-dimensional cyberspace coordinate system; constructing a cyberspace map model based on the cyberspace coordinate system and the framework for the three-dimensional cyberspace coordinate system; and designing an application scenario corresponding to a constructed cyberspace map model, and performing visualization processing on the application scenario. The method may realize the visualization of multi-dimensional information of cyberspace based on a unified and constant backboard, e.g., an Autonomous System (AS) topology, an Internet Protocol (IP) address composition, network resource element information, a hierarchical structure, and the like, and is suitable for visualization of a number of security attacks on the cyberspace and network management scenarios.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: March 26, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Jilong Wang, Shuying Zhuang
  • Patent number: 11938639
    Abstract: A boundary protection method and system of a radiation detection robot. The boundary protection method comprises: a first laser radar and a second laser radar are arranged diagonally, a first marking rod and a second marking rod are arranged diagonally; a boundary of an interlocking zone is defined by the first laser radar, the second laser radar, the first marking rod and the second marking rod; the object to be detected is placed in the interlocking zone; the radiation detection robot uses rays to detect the object to be detected in the interlocking zone; an early warning zone is provided outside the interlocking zone; wherein when it is detected that a person or object has intruded into the interlocking zone, the radiation detection robot stops emitting rays; and when it is detected that a person or object has intruded into the early warning zone, a warning is issued directly.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: March 26, 2024
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Zhiqiang Chen, Jin Cui, Bin Hu, Dong Lin, Huawei Wu
  • Patent number: 11943550
    Abstract: Embodiments of the present disclosure provide a dual-modality neuromorphic vision sensor. A first-type current-mode active pixel sensor (APS) circuit can mimic excitatory rod cells, to perceive light intensity gradient information in a target light signal, thereby improving a dynamic arrange of an image sensed by a neuromorphic, vision sensor and its shooting speed. In addition, a first-type control switch is introduced for each of non-target first-type photosensitive devices, to control the obtained light intensity gradient information, and adjust the dynamic arrange of the image sensed by the neuromorphic vision sensor, thereby adjusting the shooting speed, and realizing a reconfigurable effect A voltage-mode APS can mimic cone cells, to output a target voltage signal representing light intensity information in the target light signal, and perceive the light intensity information in the target light signal.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: March 26, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Luping Shi, Zheyu Yang, Rong Zhao, Jing Pei, Haizheng Xu
  • Patent number: 11941711
    Abstract: Disclosed is a centralized cloud energy storage system for massive and distributed users and a transaction settlement method thereof, a storage medium, and a terminal. The system includes: a centralized energy storage facility invested and operated by a cloud energy storage service provider; the massive and distributed users; and a power network and a user energy management system connecting the centralized energy storage facility with the massive and distributed users. A user sends a charging and discharging request to the cloud energy storage service provider through the user energy management system, and the cloud energy storage service provider issues a charging and discharging instruction to the centralized cloud energy storage system.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: March 26, 2024
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Ning Zhang, Jingkun Liu, Yi Wang, Chongqing Kang
  • Patent number: 11940349
    Abstract: Disclosed is a plane grating calibration system, comprising an optical subsystem, a frame, first vibration isolator, a vacuum chuck, a workpiece stage, second vibration isolator, a base platform and a controller; the optical subsystem is mounted on the frame, and the frame is isolated from vibration by the first vibration isolator; the vacuum chuck is rotatably mounted on the workpiece stage, the workpiece stage is positioned on the base platform, and the base platform is isolated from vibration by the second vibration isolator. A displacement interferometer is integrated into the optical subsystem, and the entire optical subsystem adopts a method of sharing a light source, thereby avoiding the problems of low wavelength precision and poor coherence of separate light sources.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: March 26, 2024
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Leijie Wang, Ming Zhang, Yu Zhu, Jiankun Hao, Xin Li, Rong Cheng, Kaiming Yang, Jinchun Hu
  • Publication number: 20240097348
    Abstract: An antenna structure, an electronic device, and a wireless network system are provided, and relate to the field of antenna technologies. A patch antenna array includes four patch antennas. The four patch antennas are arranged in two rows and two columns. One of the feeding structures is included between two of the patch antennas in each row. One of the feeding structures is included between two of the patch antennas in each column. The feeding structure located between the two patch antennas in each column is connected to the first feeding port, so that the four patch antennas all generate polarization in a first direction. The feeding structure located between the two patch antennas in each row is connected to the second feeding port, so that the four patch antennas all generate polarization in a second direction.
    Type: Application
    Filed: December 28, 2022
    Publication date: March 21, 2024
    Applicants: Honor Device Co., Ltd., TSINGHUA UNIVERSITY
    Inventors: Xiaopeng ZHANG, Zhijun ZHANG, Dawei ZHOU
  • Patent number: 11933934
    Abstract: The present disclosure relates to a security inspection device and a transfer method, and the security inspection device includes an arm frame, provided with detectors, and configured to form an inspection channel; a first compartment, internally provided with a radiation source and connected with the arm frame, a protection wall, connected with the first compartment or the arm frame, and configured to perform radiation protection for an object to be protected, and a tire assembly, configured to enable the security inspection device to move relative to the ground, and the arm frame, the first compartment, the protection wall and the tire assembly are set to be transported together in a connected state.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: March 19, 2024
    Assignees: NUCTECH COMPANY LIMITED, NUCTECH (BEIJING) COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Xuping Fan, Quanwei Song, Yu Hu, Shangmin Sun
  • Patent number: 11936861
    Abstract: Embodiments of this application relate to the video coding and compression field, and disclose an encoding method and apparatus, and a decoding method and apparatus, to resolve a problem that an existing split mode cannot satisfy a relatively complex texture requirement. The decoding method specifically includes: parsing a bitstream to determine a basic split mode for a current to-be-decoded picture block and a target derivation mode for a subpicture block of the current to-be-decoded picture block; splitting the current to-be-decoded picture block into N subpicture blocks in the basic split mode, where N is an integer greater than or equal to 2; deriving one derived picture block from at least two adjacent subpicture blocks in the N subpicture blocks in the target derivation mode; and decoding the derived picture block.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: March 19, 2024
    Assignees: Huawei Technologies Co., Ltd., Tsinghua University
    Inventors: Quanhe Yu, Jicheng An, Jianhua Zheng, Yongbing Lin, Liqiang Wang, Benben Niu, Ziwei Wei, Yun He