Patents Assigned to U.S. Department of Energy
  • Patent number: 8968827
    Abstract: A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100° C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: March 3, 2015
    Assignee: U.S. Department of Energy
    Inventors: Tammy L. Trowbridge, Alan K. Wertsching, Patrick J. Pinhero, David L. Crandall
  • Patent number: 8951311
    Abstract: A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 10, 2015
    Assignee: U.S. Department of Energy
    Inventors: Peter L. Rozelle, Victor K. Der
  • Patent number: 8951671
    Abstract: Novel intercalation electrode materials including ternary acetylides of chemical formula: AnMC2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 10, 2015
    Assignee: U.S. Department of Energy
    Inventors: Karoly Nemeth, George Srajer, Katherine C. Harkay, Joseph Z. Terdik
  • Patent number: 8934210
    Abstract: A method for demagnetizing comprising positioning a core within the electromagnetic field generated by a first winding until the generated first electrical current is not substantially increasing, thereby determining a saturation current. A second voltage, having the opposite polarity, is then applied across the first winding until the generated second electrical current is approximately equal to the magnitude of the determined saturation current. The maximum magnetic flux within the core is then determined using the voltage across said first winding and the second current. A third voltage, having the opposite polarity, is then applied across the first winding until the core has a magnetic flux equal to approximately half of the determined maximum magnetic flux within the core.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 13, 2015
    Assignee: U.S. Department of Energy
    Inventors: Ronald J. Denis, Nathanael J. Makowski
  • Patent number: 8934511
    Abstract: A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second optical source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: January 13, 2015
    Assignee: U.S. Department of Energy
    Inventors: Steven D. Woodruff, Dustin L. Mcintyre
  • Patent number: 8932446
    Abstract: An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: January 13, 2015
    Assignee: U.S. Department of Energy
    Inventors: Shelly X Li, Jan-fong Jue, Ronald Scott Herbst, Steven Douglas Herrmann
  • Patent number: 8920526
    Abstract: The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700° C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700° C. by enabling a series of reactions which generate H2 and CH4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH4 at temperatures above 700° C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900° C. and pressures in excess of 10 atmospheres.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: December 30, 2014
    Assignee: U.S. Department Of Energy
    Inventors: Nicholas S. Siefert, Dushyant Shekhawat, David A. Berry, Wayne A. Surdoval
  • Patent number: 8912303
    Abstract: Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 16, 2014
    Assignee: U.S. Department of Energy
    Inventors: David Luebke, Hunaid Nulwala, Chau Tang
  • Patent number: 8906135
    Abstract: A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: December 9, 2014
    Assignee: U.S. Department of Energy
    Inventors: David Luebke, Hunald Nulwala, Chau Tang
  • Patent number: 8907105
    Abstract: The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: December 9, 2014
    Assignee: U.S. Department of Energy
    Inventors: David Luebke, Hunaid Nulwala, Chau Tang
  • Patent number: 8888895
    Abstract: A method for the removal of H2O and CO2 from a gaseous stream comprising H2O and CO2, such as a flue gas. The method initially utilizes an H2O removal sorbent to remove some portion of the H2O, producing a dry gaseous stream and a wet H2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO2 removal sorbent to remove some portion of the CO2, generating a dry CO2 reduced stream and a loaded CO2 removal sorbent. The loaded CO2 removal sorbent is subsequently heated to produce a heated CO2 stream. The wet H2O removal sorbent and the dry CO2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H2O removal sorbent, and the partially regenerated H2O removal sorbent and the heated CO2 stream are subsequently contacted in a second regeneration stage.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: November 18, 2014
    Assignee: U.S. Department of Energy
    Inventors: James C. Fisher, Ranjani V. Siriwardane, David A. Berry, George A. Richards
  • Patent number: 8854871
    Abstract: A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: October 7, 2014
    Assignee: U.S. Department of Energy
    Inventors: Shikha Jain, Valentyn Novosad
  • Patent number: 8850583
    Abstract: A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 30, 2014
    Assignee: U.S. Department of Energy
    Inventors: Trent Darnel Nelson, Jedediah Haile
  • Patent number: 8836945
    Abstract: The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 1017/cm3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10?1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 16, 2014
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Congjun Wang, Mark A. Andio
  • Patent number: 8834822
    Abstract: A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C12H28O4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: September 16, 2014
    Assignees: Georgia Tech Research Corporation, U.S. Department of Energy
    Inventors: McMahan Gay, Sunho Choi, Christopher W. Jones
  • Patent number: 8821614
    Abstract: The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 2, 2014
    Assignee: U.S. Department of Energy
    Inventors: Erik J. Albenze, David P. Hopkinson, David R. Luebke
  • Patent number: 8807988
    Abstract: The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725° C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe2O3, and the gaseous hydrocarbon is comprised of methane.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: August 19, 2014
    Assignee: U.S. Department Of Energy
    Inventors: Ranjani V. Siriwardane, Duane D. Miller
  • Patent number: 8806954
    Abstract: The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: August 19, 2014
    Assignee: U.S. Department of Energy
    Inventor: Joel M. Hubbell
  • Patent number: 8802316
    Abstract: Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: August 12, 2014
    Assignee: U.S. Department of Energy
    Inventors: Meilin Liu, Ze Liu, Mingfei Liu, Lifang Nie, David Spencer Mebane, Lane Curtis Wilson, Wayne Surdoval
  • Patent number: 8791037
    Abstract: A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: July 29, 2014
    Assignee: U.S. Department of Energy
    Inventors: Kathryn A. Berchtold, Jennifer S. Young