Patents Assigned to UACJ CORPORATION
  • Publication number: 20230250523
    Abstract: An aluminum alloy extruded multi-hole tube for a heat exchanger is formed of an aluminum alloy comprising Mn of 0.60 to 1.80 mass % and Si of more than 0.00 mass % and less than 0.20 mass %, with the balance being Al and inevitable impurities. The aluminum alloy has a ratio (Mn/Si) of the Mn content to the Si content being 15.0 or more. Strength change (tensile strength (A) of the aluminum alloy after heating test - tensile strength (B) of the aluminum alloy before heating test) in a heating test at 600° C.±10° C. for 3 minutes is -5 MPa or more. The present invention can provide an aluminum alloy extruded multi-hole tube for a heat exchanger having excellent extrudability and high strength after brazing, and a method for manufacturing the same.
    Type: Application
    Filed: June 2, 2021
    Publication date: August 10, 2023
    Applicant: UACJ Corporation
    Inventors: Taichi Suzuki, Ryo Tomori, Hidetoshi Kumagai
  • Patent number: 11721361
    Abstract: There are provided: an aluminum alloy substrate for a magnetic disk, the aluminum alloy substrate including an aluminum alloy including 0.4 to 3.0 mass % of Fe and the balance of Al and unavoidable impurities, in which second phase particles having a longest diameter of 0.5 ?m or more and less than 2.0 ?m are dispersed at a distribution density of 5000 particles/mm2 or more; a method for producing the same; and a magnetic disk using the aluminum alloy substrate for a magnetic disk.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 8, 2023
    Assignees: UACJ CORPORATION, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kotaro Kitawaki, Takuya Murata, Makoto Yonemitsu, Yu Matsui, Yasuo Fujii, Ryo Sakamoto, Takashi Nakayama, Wataru Kumagai
  • Publication number: 20230220521
    Abstract: An aluminum alloy extruded multi-hole tube for a heat exchanger is formed of an aluminum alloy comprising Mn of 0.60 to 1.80 mass % and Si of 0.20 to 0.70 mass %, with the balance being Al and inevitable impurities. The aluminum alloy has a ratio (Mn/Si) of the Mn content to the Si content being 2.6 to 4.0. Strength change (tensile strength (A) of the aluminum alloy after heating test?tensile strength (B) of the aluminum alloy before heating test) thereof in a heating test at 600° C.±10° C. for 3 minutes is ?5 MPa or more. The present invention can provide an aluminum alloy extruded multi-hole tube for a heat exchanger having excellent extrudability and high strength after brazing, and a method for manufacturing the same.
    Type: Application
    Filed: June 2, 2021
    Publication date: July 13, 2023
    Applicant: UACJ Corporation
    Inventors: Taichi Suzuki, Ryo Tomori, Hidetoshi Kumagai
  • Publication number: 20230166364
    Abstract: An aluminum alloy bare material for a member to be brazed by flux-free brazing to a brazing sheet including a brazing material formed of an aluminum alloy that includes 3.00 to 13.00 mass % of Si and less than 0.10 mass % (including 0 mass %) of Mg with the balance being Al and inevitable impurities, in which the aluminum alloy bare material for the member to be brazed is formed of an aluminum alloy including 0.004 to 6.00 mass % of Zn and 0.004 to 3.00 mass % of Mg with the balance being Al and inevitable impurities. According to the present invention, aluminum alloy materials can be provided for members to be well brazed to the brazing sheet when an aluminum material is brazed by flux-free brazing.
    Type: Application
    Filed: March 25, 2021
    Publication date: June 1, 2023
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Shinichi Nakamura, Taichi Suzuki, Hirokazu Tanaka, Nobuhiro Honma, Shogo Yamada, Taro Fukuda, Yosuke Uchida
  • Publication number: 20230150048
    Abstract: Provided is a brazed aluminum member brazed with a member formed of a brazing sheet, in which two or more grooves are provided on a surface of the brazed aluminum member in a fillet forming area, a groove depth (D1) of the grooves is 0.005 mm to 0.50 mm, a groove width (W1) of the grooves is 0.005 mm to 0.50 mm, a ratio (W1/D1) of the groove width (W1) to the groove depth (D1) is 10.00 or less, and a space (P1) between adjacent grooves is 0.00 mm to 0.30 mm. The present invention provides an aluminum alloy material and a method for manufacturing a brazed body that can secure good brazing properties even when the clearance between the jointed members is large in the case where the aluminum material is brazed without using a flux.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 18, 2023
    Applicant: UACJ Corporation
    Inventors: Shinichi Nakamura, Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Publication number: 20230150069
    Abstract: Provided is a brazed aluminum member brazed with a member formed of a brazing sheet, in which two or more grooves are provided on a surface of the brazed aluminum member in a fillet forming area, a groove depth (D1) of the grooves is 0.005 mm to 0.50 mm, a groove width (W1) of the grooves is 0.005 mm to 0.50 mm, a ratio (W1/D1) of the groove width (W1) to the groove depth (D1) is 10.00 or less, and a space (P1) between adjacent grooves is 0.00 mm to 0.30 mm. The present invention can provide an aluminum material and a method for producing a brazed product that can secure good brazing properties even when the clearance between the jointed members is large in the case where the aluminum material is brazed without using a flux.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 18, 2023
    Applicant: UACJ Corporation
    Inventors: Shinichi Nakamura, Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Publication number: 20230134532
    Abstract: An aluminum alloy bare material for a member to be brazed by flux-free brazing to a brazing sheet including a brazing material formed of an aluminum alloy that includes 3.00 to 13.00 mass % of Si and 0.10 to 2.00 mass % of Mg with the balance being Al and inevitable impurities, in which the aluminum alloy bare material for the member to be brazed is formed of an aluminum alloy including 0.004 to 6.00 mass % of Zn and 0.004 to 3.00 mass % of Mg with the balance being Al and inevitable impurities. According to the present invention, aluminum alloy materials can be provided for members to be well brazed to the brazing sheet with the brazing material including Mg when an aluminum material is brazed by flux-free brazing.
    Type: Application
    Filed: March 25, 2021
    Publication date: May 4, 2023
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Shinichi Nakamura, Taichi Suzuki, Hirokazu Tanaka, Shogo Yamada, Taro Fukuda, Yosuke Uchida, Nobuhiro Honma
  • Publication number: 20230127403
    Abstract: The surface-treated aluminum material includes an aluminum material and an oxide film formed on at least part of a surface of the aluminum material, and when a perimeter and an area of a void on a surface of the oxide film are represented by L and S, respectively, an undulation degree of the void defined as L2/S×(¼?) is 2.5 or more.
    Type: Application
    Filed: December 27, 2022
    Publication date: April 27, 2023
    Applicant: UACJ CORPORATION
    Inventors: Daiki NAKAJIMA, Sohei SAITO
  • Patent number: 11618942
    Abstract: A sputtering-target material (2) is composed of aluminum having a purity of 99.999 mass % or higher and unavoidable impurities. When an average crystal-grain diameter at the plate surface (21) is given as Ds [?m], an average crystal-grain diameter at a depth of ¼th of the plate thickness (22) is given as Dq [?m], and an average crystal-grain diameter at a depth of ½ of the plate thickness (23) is given as Dc [?m], the formulas below are satisfied, and the average crystal-grain diameter changes continuously in a plate-thickness direction. Ds?230 Dq?280 Dc?300 1.2?Dq/Ds 1.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 4, 2023
    Assignees: UACJ CORPORATION, SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hiroki Takeda, Masahiro Fujita
  • Patent number: 11591674
    Abstract: An aluminum-alloy sheet has a chemical composition containing Si: 2.3-3.8 mass %, Mn: 0.35-1.05 mass %, Mg: 0.35-0.65 mass %, Fe: 0.01-0.45 mass %, and at least one element selected from the group consisting of Cu: 0.0010-1.0 mass %, Cr: 0.0010-0.10 mass %, Zn: 0.0010-0.50 mass %, and Ti: 0.0050-0.20 mass %. The ratio of the Si content to the Mn content is 2.5 or more and 9.0 or less. The aluminum-alloy sheet exhibits an elongation of 23% or more and a strain hardening exponent of 0.28 or more at a nominal strain of 3%. Such an aluminum-alloy sheet is well suited for press forming (stamping) applications, such as forming automobile body panels.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: February 28, 2023
    Assignees: UACJ CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryo Kuramoto, Takeshi Nagai, Yuya Masuda, Kazutaka Ohno
  • Patent number: 11572608
    Abstract: An aluminum alloy thick plate is formed of an aluminum alloy including Mg of 2.0 to 5.0 mass %, and has a plate thickness of 300 to 400 mm. A is 700 pieces/cm2 or less and B is 1.3 times or more as large as A, where (i) A (pieces/cm2) is a maximum value in numbers of crystallized products with a maximum length of 60 ?m or more per unit area in each of positions located at a center portion in a thickness direction and at positions of 0.39 Wa to 0.48 Wa in a plate width direction; and (ii) B (pieces/cm2) is a maximum value in numbers of crystallized products with a maximum length of 60 ?m or more per unit area in each of positions located at the center portion in the thickness direction and at positions of 0.12 Wa to 0.30 Wa in the plate width direction.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 7, 2023
    Assignee: UACJ CORPORATION
    Inventors: Takashi Kubo, Tatsuya Yamada
  • Patent number: 11573552
    Abstract: An object is to predict a microstructure of Al in an industrial process more accurately than conventional techniques. In an information processor (1), an inter-step information integration section supplies a PC(i) and an MS(i, 0) to each i-th step calculating section included in a step calculating section. Each i-th step calculating section supplies an MS(i, t) and a TMP(i, t) to a microstructure calculating section and thereby causes the microstructure calculating section to find an MS(i, tfi), and supplies the MS(i, tfi) to the inter-step information integration section (11). The inter-step information integration section (11) sets, as an MS(i+1, 0), the MS(i, tfi) received from the i-th step calculating section.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: February 7, 2023
    Assignee: UACJ CORPORATION
    Inventor: Shingo Iwamura
  • Patent number: 11571769
    Abstract: In a brazing sheet manufacturing method, a cladding slab is prepared by overlaying at least a core-material slab composed of an aluminum material and a filler-material slab composed of an Al—Si series alloy, in which a metal element that oxidizes more readily than Al is included in at least one of the slabs. A clad sheet is prepared by hot rolling this cladding slab, which then has at least a core material layer composed of the core-material slab and a filler material layer composed of the filler-material slab and disposed on at least one side of the core material. Then, a surface of the clad sheet is etched using a liquid etchant that contains an acid. Subsequently, the clad sheet is cold rolled to a desired thickness. In flux-free brazing, such a brazing sheet is capable of curtailing degradation in brazeability caused by fluctuations in dew point and oxygen concentration.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 7, 2023
    Assignee: UACJ CORPORATION
    Inventors: Yutaka Yanagawa, Tatsuya Ide, Taichi Suzuki, Tomoki Yamayoshi
  • Patent number: 11565335
    Abstract: A brazing method for brazing a material without using a flux includes performing brazing in an inert gas atmosphere, in a state in which the material to be brazed is covered with a cover member formed of an upper cover portion covering the whole upper portion of the material to be brazed and side cover portions covering at least some of the side portions of the material to be brazed, with the upper cover portion contacting the upper portion of the material to be brazed, and the material to be brazed and the cover member are held with a heat transmission promoting member formed of an upper heat transmission promoting portion and a lower heat transmission promoting portion, with the upper heat transmission promoting portion contacting the upper cover portion, and with the lower heat transmission promoting portion contacting the lower portion of the material to be brazed.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: January 31, 2023
    Assignee: UACJ CORPORATION
    Inventor: Yutaka Yanagawa
  • Patent number: 11560641
    Abstract: The present disclosure provides a surface-treated aluminum material having excellent adhesiveness to resins, on the surface of which an oxide film is formed, the oxide film comprising a surface-side porous aluminum oxide film having a thickness of 20 to 500 nm and a base-side barrier aluminum oxide film having a thickness of 3 to 30 nm, wherein small pores each having a diameter of 5 to 30 nm are formed on the porous aluminum oxide film, and the length of cracks formed in a boundary between the porous aluminum oxide film and the barrier aluminum oxide film is not more than 50% of the length of the boundary, a method for manufacturing the surface-treated aluminum material, and a surface-treated aluminum material-resin bonded body, comprising the surface-treated aluminum material and a resin that covers the surface of the oxide film formed thereon.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: January 24, 2023
    Assignee: UACJ CORPORATION
    Inventors: Shinichi Hasegawa, Tatsuya Mimura, Yukio Honkawa, Toshiki Maezono
  • Patent number: 11549190
    Abstract: The present disclosure relates to an aluminum member including a mother material containing aluminum or an aluminum alloy, and an anodic oxide film on the surface of the mother material. The anodic oxide film has a barrier layer on the surface of the mother material, and a porous layer on the barrier layer), and the BET specific surface area of the anodic oxide film is 0.1 to 10.0 m2/g.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: January 10, 2023
    Assignee: UACJ CORPORATION
    Inventors: Syu Saito, Junji Nunomura
  • Patent number: 11519090
    Abstract: The method for producing an electrolytic aluminum foil of the present disclosure is a method for producing an electrolytic aluminum foil, the method including supplying an electrolytic solution in an electrolytic cell provided with a diaphragm between an anode and a cathode and depositing an aluminum foil on a surface of the cathode by electrolysis, wherein the diaphragm is made of aluminum having a purity of 85.0% or more and has a plurality of pores having an average pore diameter of 100 to 1000 ?m.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: December 6, 2022
    Assignee: UACJ Corporation
    Inventors: Yukio Honkawa, Junji Nunomura, Yoichi Kojima
  • Patent number: 11499209
    Abstract: The present disclosure shows a superplastic-forming aluminum alloy plate that has excellent properties for superplastic-forming, such as blow forming, and that has excellent surface properties after forming. Shown is a superplastic-forming aluminum alloy plate and a production method therefor, the superplastic-forming aluminum alloy plate being characterized by comprising an aluminum alloy which contains 2.0 to 6.0 mass % Mg, 0.5 to 1.8 mass % Mn and 0.40 mass % or less Cr and in which the balance consists of Al and unavoidable impurities, wherein the unavoidable impurities are restricted to have 0.20 mass % or less Fe and 0.20 mass % or less Si, the 0.2% proof stress is 340 MPa or more, and the density of intermetallic compounds having an equivalent circular diameter of 5 to 15 ?m at the RD-TD plane which extends along the center of the plate cross-section is 50 to 400 pieces/mm2.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 15, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoyuki Kudo, Yoshifumi Shinzato, Ryo Kuramoto
  • Patent number: 11491587
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %. Si of 1.50 mass % or less, Fe of 1.00 mass % or less, and Ti of 0.10 to 0.30 mass %, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities. In a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 8, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada
  • Patent number: 11491586
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked in this order. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %, Si of 1.50 mass % or less, and Fe of 1.00 mass % or less, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities, and, in a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 8, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka