Patents Assigned to UACJ CORPORATION
  • Patent number: 10930522
    Abstract: A semiconductor layer of the present invention is a semiconductor layer including: a pn junction at which an n-type semiconductor (Al2O3 (n-type)) and a p-type semiconductor (Al2O3 (p-type)) are joined, the n-type semiconductor (Al2O3 (n-type)) having a donor level that is formed by causing an aluminum oxide film (Al2O3) to excessively contain aluminum (Al), the p-type semiconductor (Al2O3 (p-type)) having an acceptor level that is formed by causing an aluminum oxide film (Al2O3) to excessively contain oxygen (O).
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: February 23, 2021
    Assignee: UACJ Corporation
    Inventor: Koichi Ashizawa
  • Publication number: 20210039207
    Abstract: A flux-free brazing aluminum alloy brazing sheet includes: a core material formed of aluminum alloy comprising Si of 0.50 to 0.90 mass %, Cu of 0.30 to 2.50 mass %, and Mn of 1.40 to 1.80 mass %, with a Mg content limited to 0.05 mass % or less, and with the balance being Al and inevitable impurities; an intermediate material being formed of aluminum alloy comprising Mg of 0.40 to 1.00 mass %, and Zn of 2.00 to 6.00 mass %, with the balance being Al and inevitable impurities; and a brazing material being formed of aluminum alloy comprising Si of 6.00 to 13.00 mass %, Mg of 0.05 to 0.40 mass %, and Bi of 0.010 to 0.050 mass %, with the balance being Al and inevitable impurities.
    Type: Application
    Filed: March 5, 2019
    Publication date: February 11, 2021
    Applicants: UACJ Corporation, DENSO CORPORATION
    Inventors: Tatsuya Ide, Yutaka Yanagawa, Shogo Yamada, Takahiro Shinoda, Shingo Ono
  • Patent number: 10916357
    Abstract: An object of the present invention is to provide an aluminum alloy foil for an electrode current collector and a manufacturing method thereof, the foil having a high strength and high strength after a drying process after the application of the active material while keeping a high electrical conductivity. Disclosed is a method for manufacturing an aluminum alloy foil for electrode current collector, including: forming by continuous casting an aluminum alloy sheet containing 0.03 to 1.0% of Fe, 0.01 to 0.2% of Si, 0.0001 to 0.2% of Cu, with the rest being Al and unavoidable impurities, performing cold rolling to the aluminum alloy sheet at a cold rolling reduction of 80% or lower, and performing heat treatment at 550 to 620° C. for 1 to 15 hours.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 9, 2021
    Assignee: UACJ Corporation
    Inventors: Masakazu Seki, Satoshi Suzuki, Kenji Yamamoto, Tomohiko Furutani
  • Publication number: 20210031289
    Abstract: A brazing method for brazing a material without using a flux includes performing brazing in an inert gas atmosphere, in a state in which the material to be brazed is covered with a cover member formed of an upper cover portion covering the whole upper portion of the material to be brazed and side cover portions covering at least some of the side portions of the material to be brazed, with the upper cover portion contacting the upper portion of the material to be brazed, and the material to be brazed and the cover member are held with a heat transmission promoting member formed of an upper heat transmission promoting portion and a lower heat transmission promoting portion, with the upper heat transmission promoting portion contacting the upper cover portion, and with the lower heat transmission promoting portion contacting the lower portion of the material to be brazed.
    Type: Application
    Filed: January 30, 2019
    Publication date: February 4, 2021
    Applicant: UACJ Corporation
    Inventor: Yutaka Yanagawa
  • Publication number: 20210033359
    Abstract: An aluminum alloy heat exchanger for an exhaust gas recirculation system, which is a heat exchanger installed in an exhaust gas recirculation system of an internal combustion engine to cool the exhaust gas comprises a tube provided with a sacrificial anticorrosion material on a side along which the exhaust gas passes, and a fin brazed to the surface side of the sacrificial anticorrosion material of the tube, the fin having a pitting potential higher than the pitting potential of the surface of the sacrificial anticorrosion material of the tube. According to the disclosure, an aluminum alloy heat exchanger for an exhaust gas recirculation system having a long service life with effective function of the sacrificial anticorrosion even under an acidic environment in which an oxide film is weakened as a whole and pitting corrosion is unlikely to occur can be provided.
    Type: Application
    Filed: March 27, 2019
    Publication date: February 4, 2021
    Applicants: UACJ Corporation, DENSO CORPORATION
    Inventors: Yoshiyuki Oya, Tomohiro Shoji, Atsushi Fukumoto, Kouki Nishiyama, Toru Ikeda, Takahiro Shinoda
  • Patent number: 10907241
    Abstract: Provided is an aluminum alloy plate for blow molding comprising: 0.3% by mass or more and 1.8% by mass or less of Mg; 0.6% by mass or more and 1.6% by mass or less of Si; and 0.2% by mass or more and 1.2% by mass or less of Mn; wherein, in at least one surface of the aluminum alloy plate for blow molding, X and Y satisfy the following relations: 0.10?X, and, Y??8.0X+10.8; wherein X represents the ratio of regions whose valley depth in a roughness curve is 0.3 ?m or more; and Y represents the yield stress upon deformation of the aluminum alloy plate for blow molding under predetermined conditions.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 2, 2021
    Assignee: UACJ CORPORATION
    Inventors: Tomoyuki Kudo, Makoto Saga
  • Publication number: 20210025663
    Abstract: An aluminum alloy heat exchanger for an exhaust gas recirculation system, the heat exchanger obtained by brazing: a tube material comprising a core material comprising 0.05 mass % to 1.50 mass % of Si, 0.05 mass % to 3.00 mass % of Cu, and 0.40 mass % to 2.00 mass % of Mn, and a sacrificial anticorrosion material comprising 2.00 mass % to 6.00 mass % of Zn, clad on an inner side surface of the core material; and a fin material comprising a core material comprising 0.05 mass to 1.50 mass % of Si, and 0.40 mass % to 2.00 mass % of Mn, and a brazing material comprising 3.00 mass % to 13.00 mass % of Si, clad on both surfaces of the core material; the heat exchanger having a ratio of a surface area Sb (mm2) of the fin material to a surface area Sa (mm2) of the sacrificial anticorrosion material of less than 200%.
    Type: Application
    Filed: March 27, 2019
    Publication date: January 28, 2021
    Applicants: UACJ Corporation, DENSO CORPORATION
    Inventors: Yoshiyuki Oya, Tomohiro Shoji, Atsushi Fukumoto, Kouki Nishiyama, Toru Ikeda, Takahiro Shinoda
  • Patent number: 10895277
    Abstract: A welded joint comprising an aluminum-based base material comprising an aluminum alloy or pure aluminum and a copper-based base material comprising a copper alloy or pure copper joined by a weld metal portion is provided. The weld metal portion contains copper in ranges of less than 75% by mass and silicon in ranges of less than 13% by mass and has a higher content of copper and silicon than the aluminum-based base material.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 19, 2021
    Assignee: UACJ Corporation
    Inventors: Takashi Murase, Shohei Yomogida, Toshihiko Fukuda
  • Publication number: 20210008864
    Abstract: A peeling apparatus for an aluminum plate material is configured to be able to peel one or a plurality of aluminum plate materials from a stack of aluminum plate materials in which a plurality of aluminum plate materials are pressure-annealed and adhered to each other. The peeling apparatus includes a vibration transmitting section that is configured to be able to abut an outer peripheral surface of an aluminum plate material and is configured to be able to apply vibration along a stacking direction of the stack to the aluminum plate material, and a transducer that generates the vibration, and transmits the vibration to the vibration transmitting section.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Applicants: FURUKAWA ELECTRIC CO., LTD., UACJ CORPORATION
    Inventors: Toshihiro NAKAMURA, Hideki TAKAHASHI, Kimie IMAKAWA, Naoki KITAMURA, Kotaro KITAWAKI, Takuya MURATA
  • Patent number: 10889881
    Abstract: An aluminum alloy pipe produced by porthole extrusion includes: Mg at a concentration equal to or higher than 0.7% (mass %, the same applies hereinafter) and lower than 1.5%; Ti at a concentration higher than 0% and equal to or lower than 0.15%; with the balance being Al and unavoidable impurities. As the unavoidable impurities, Si has a limited concentration of 0.20% or lower, Fe 0.20% or lower, Cu 0.05% or lower, Mn 0.10% or lower, Cr 0.10% or lower, and Zn 0.10% or lower. Difference between the maximum value and the minimum value of the Mg concentration in a lengthwise direction of the pipe is 0.2% or lower, and the average crystal grain size in a cross-section perpendicular to the lengthwise direction is 300 ?m or smaller. An aluminum alloy pipe used for piping or hose joints and having excellent strength, corrosion resistance, and processability can be provided.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 12, 2021
    Assignees: UACJ CORPORATION, UACJ EXTRUSION CORPORATION
    Inventors: Taichi Suzuki, Hidenori Hatta, Takumi Ishizaka
  • Publication number: 20210002783
    Abstract: An aluminum member includes: a base material made of aluminum or an aluminum alloy; and an anodized coating including a barrier layer on a surface of the base material and a porous layer on the barrier layer, wherein the anodized coating contains phosphorus (P) and sulfur (S), and has a thickness of 100 ?m or less, and, in a depth direction heading from a surface of the anodized coating toward the base material, a depth providing a maximum content of S in a region situated at a depth of 500 nm or more from the surface of the anodized coating is larger than a depth providing a maximum content of P, and an inequality (the maximum content of S)>(the maximum content of P) holds.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Applicant: UACJ CORPORATION
    Inventors: Mihoko KIKUCHI, Junji NUNOMURA
  • Patent number: 10857629
    Abstract: An aluminum alloy brazing sheet is disclosed including a core material made of pure aluminum or aluminum alloy, one side or both sides of the core material, being clad with a brazing material, with an intermediate material interposed between the core material and the brazing material, the intermediate material including 0.4 to 6 mass % of Mg, further including at least one of Mn, Cr, and Zr, and the balance being Al and inevitable impurities, having the Mn content not more than 2.0 mass %, the Cr content not more than 0.3 mass %, and the Zr content not more than 0.3 mass %, with the total content of Mn, Cr, and Zr being at least 0.1 mass %, the brazing material including 4 to 13 mass % of Si, and the balance being Al and inevitable.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 8, 2020
    Assignee: UACJ Corporation
    Inventors: Atsushi Fukumoto, Yasunaga Itoh, Shoichi Sakoda, Tomoki Yamayoshi
  • Patent number: 10844506
    Abstract: An aluminum member comprises a base material made of aluminum or art aluminum alloy, and an anodized coating provided on a surface of the base material and having a thickness of 100 ?m or less. The anodized coating comprises a barrier layer formed on the surface of the base material and having a thickness of 10 to 150 nm, and a porous layer formed on the barrier layer and having a thickness of 6 ?m or more. The porous layer comprises a first pore extending in a thickness direction of the porous layer from a boundary between the porous layer and the barrier layer, and a second pore connected to the first pore and extending so as to branch radially in the thickness direction of the porous layer toward a surface of the porous layer.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: November 24, 2020
    Assignee: UACJ Corporation
    Inventor: Junji Nunomura
  • Patent number: 10836440
    Abstract: An instrument panel beam is the instrument panel beam that is arranged in the width direction of an automobile, and includes: a large-diameter hollow tube having a hollow cylindrical shape; and a small-diameter hollow tube which is joined to the large-diameter hollow tube in an axial direction, has a diameter that is smaller than that of the large-diameter hollow tube, and has a hollow cylindrical shape. The small-diameter hollow tube includes two flat plates that extend in a longitudinal direction and two bends that are curved in a circumferential direction, and the flat plates and the bends are alternately arranged in the circumferential direction.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: November 17, 2020
    Assignees: UACJ CORPORATION, UACJ EXTRUSION CORPORATION
    Inventors: Yutaro Konno, Akira Nishikawa, Yasuyuki Tanaka, Toshiaki Doi
  • Patent number: 10807142
    Abstract: A hot blow forming method for the aluminum alloy sheet carries out a hot blow forming to an aluminum alloy sheet using a first metal mold being a female mold for forming having a protruding surface portion on an inside surface thereof and a second metal mold for gas introduction. Immediately prior to the hot blow forming, a temperature (T1) of the aluminum alloy sheet and a temperature (T2) of the first metal mold satisfy a relation (T1)-(T2)?30° C. and the temperature (T2) is equal to or higher than 400° C. In the hot blow forming, the aluminum alloy sheet is made to be brought into contact with at least a part of the protruding surface portion of the first metal mold within 30 seconds from a start of the gas introduction from the second metal mold.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: October 20, 2020
    Assignee: UACJ CORPORATION
    Inventor: Mineo Asano
  • Publication number: 20200325354
    Abstract: The present invention provides a coating material that can improve gravure printing characteristics of the printing surface of a printing substrate to favorably transfer an ink fed in the cell of a gravure printing roll to the printing surface of the printing substrate, thereby achieving the beautiful gravure printing. The coating material of the present invention is a coating material for forming a surface layer, serving as a printing surface, on a printing substrate on which gravure printing is to be performed, and the coating material is characterized by including a vinyl chloride-vinyl acetate-unsaturated fatty acid copolymer that includes 80 to 90% by mass of a component of vinyl chloride, 9.2 to 19.5% by mass of a component of vinyl acetate, and 0.1 to 0.8% by mass of a component of an unsaturated fatty acid.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 15, 2020
    Applicant: UACJ CORPORATION
    Inventors: Hiroshi NISHIO, Osamu KATOH, Yukie KITADA
  • Publication number: 20200306854
    Abstract: In a method for joining different type of metals, an Al-based base material (2) made of an Al alloy or pure Al and a Cu-based base material (3) made of a Cu alloy or pure Cu are joined to each other. The Al-based base material (2) and the Cu-based base material (3) are joined to each other by laser welding for melting and solidifying a portion irradiated with laser light using a filler metal (5) made of an Al alloy containing at least one of Si and Cu.
    Type: Application
    Filed: July 18, 2018
    Publication date: October 1, 2020
    Applicant: UACJ CORPORATION
    Inventors: Shohei YOMOGIDA, Takeshi MURASE, Toshihiko FUKUDA
  • Patent number: 10788275
    Abstract: An aluminum alloy clad material includes a core material, one side being clad with cladding material 1, the other side being clad with cladding material 2, the core material including an aluminum alloy that includes 0.5 to 1.8% of Mn, and limited to 0.05% or less of Cu, with the balance being Al and unavoidable impurities, the cladding material 1 including an aluminum alloy that includes 3 to 10% of Si, and 1 to 10% of Zn, with the balance being Al and unavoidable impurities, and the cladding material 2 including an aluminum alloy that includes 3 to 13% of Si, and limited to 0.05% or less of Cu, with the balance being Al and unavoidable impurities, wherein the Si content X (%) in the cladding material 1 and the Si content Y (%) in the cladding material 2 satisfy the value (Y?X) is ?1.5 to 9%.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: September 29, 2020
    Assignees: DENSO CORPORATION, UACJ Corporation
    Inventors: Shusuke Otsuki, Shoei Teshima, Yuusuke Kitoh, Jun Abei, Tomohiro Shoji, Naoki Yamashita, Toshikazu Tanaka, Hirokazu Tanaka
  • Patent number: 10767247
    Abstract: There are provided: an aluminum alloy magnetic disk substrate including: an aluminum alloy base material including an aluminum alloy containing 0.4 to 3.0 mass % (hereinafter, simply referred to as “%”) of Fe, 0.1 to 3.0% of Mn, 0.005 to 1.000% of Cu, and 0.005 to 1.000% of Zn, with the balance of Al and unavoidable impurities; and an electroless Ni—P plated layer formed on a surface of the aluminum alloy base material, in which the peak value (BLEI) of Fe emission intensity at an interface between the electroless Ni—P plated layer and the aluminum alloy base material, as determined by a glow discharge optical emission spectrometry device, is lower than Fe emission intensity (AlEI) in the interior of the aluminum alloy base material, as determined by the glow discharge optical emission spectrometry device; and a method for producing the aluminum alloy magnetic disk substrate.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 8, 2020
    Assignees: UACJ Corporation, Furukawa Electric Co., Ltd.
    Inventors: Takuya Murata, Kotaro Kitawaki, Makoto Yonemitsu, Naoki Kitamura, Takashi Nakayama, Hideyuki Hatakeyama, Ryo Sakamoto, Sadayuki Toda
  • Patent number: 10755738
    Abstract: The present invention provides: an aluminum alloy substrate for magnetic discs with excellent plating surface smoothness; a manufacturing method therefor; and a magnetic disc using said aluminum alloy substrate for magnetic discs. The present invention is an aluminum alloy substrate for magnetic discs, a manufacturing method therefor, and a magnetic disc using said aluminum alloy substrate for magnetic discs, the aluminum alloy substrate being characterized in being obtained from an aluminum alloy containing Mg: 2.0-8.0 mass % (“%” below), Be: 0.00001-0.00200%, Cu: 0.003-0.150%, Zn: 0.05-0.60%, Cr: 0.010-0.300%, Si: 0.060% or less, Fe: 0.060% or less, the balance being obtained from Al and unavoidable impurities.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 25, 2020
    Assignees: UACJ Corporation, Furukawa Electric Co., Ltd.
    Inventors: Kotaro Kitawaki, Takuya Murata, Akira Hibino, Naoki Kitamura, Masanobu Onishi, Hideki Takahashi, Satoshi Yamazaki, Sadayuki Toda