Abstract: A device for detecting infrared radiation including a matrix of resistive imaging bolometers above a substrate, a read circuit forming an analog electrical signal constituting an image of the infrared radiation impinging on the matrix, a probe for measuring the temperature of the substrate, an ADC for converting the analogue electrical signals from the read circuit and probe, and a data processing unit for correcting the signal formed by the read circuit according digital values NC(i,j) corresponding to electrical signals from the bolometers exposed to a uniform scene at the measured temperature of the substrate. The data processing unit including a unit for computing the digital values NC(i,j) based on a single set of parameters of a predetermined physical model of the read circuit electrical signals and corresponding to the exposure of the matrix of imaging bolometers to a temperature substantially equal to the measured substrate temperature.
Type:
Grant
Filed:
November 30, 2010
Date of Patent:
April 17, 2012
Assignee:
Ulis
Inventors:
Benoît Dupont, Aurélie Touvignon, Michel Vilain, Antoine Dupret
Abstract: A device for detecting infrared radiation comprising an array of bolometers for detecting radiation; and in order to read each bolometer, a signal shaping circuitry comprising: a circuitry capable of biasing the bolometer at a predetermined voltage in order to make current flow therethrough; a circuitry capable of generating a common-mode current; and a circuitry capable of integrating the difference between the current that flows through the bolometer and the common-mode current. According to the invention, the device comprises a circuitry capable of injecting current into each bolometer in order to shift its resistance by a predetermined quantity that depends on its offset, current injection being performed prior to readout biasing of the bolometer and the shift being performed according to the direction in which the bolometer's resistance varies as a function of temperature. In addition, correction circuitry is capable of shifting the resistances of bolometers towards a common value.
Abstract: A device for detecting infrared radiation including a resistive imaging bolometer intended to be electrically connected to a circuit for measuring a resistance of the imagine bolometer, whereby the device initially controls and adjusts the resistance of the imaging bolometer by injecting current into the imaging bolometer.
Abstract: A device for detecting infrared radiation including a resistive imaging bolometer, a mechanism for measuring drift in the electrical resistance of the bolometer relative to a reference value of the electrical resistance of the bolometer which corresponds to predetermined operating conditions of the bolometer, and a mechanism for correcting the effects of the drift in resistance or for correcting the drift itself.
Abstract: An electromagnetic radiation detection device including multiple elementary detectors (32, 320) grouped into one or more sub-assemblies (300) each including several elementary detectors (32, 320), where each elementary detector (32, 320) is connected by an interconnection (32.1, 320.1) to an impedance-matching device (33), characterised in that: the impedance-matching device (33) is common to all the elementary detectors (32, 320) of a single sub-assembly (300), in each sub-assembly (300) the interconnections (32.1, 320.1) have roughly the same resistance value.
Type:
Application
Filed:
April 11, 2011
Publication date:
December 1, 2011
Applicants:
ULIS, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
Abstract: An ADC includes: a single circuit capable of generating reference voltages that are constant and then decreasing over time, according to discrete values, including: a constant current source; a resistive bridge connected to the current source, the voltages of the bridge forming the reference voltages; a voltage source capable of producing a decreasing voltage on a node of the bridge; contact breaker for the connection of the voltage source to said node, a circuit including: means for comparing a voltage for conversion with the reference voltages; means for selecting the reference voltage whereof the value, when it is constant, is immediately higher than the voltage for conversion; means for counting a number of time units necessary for the reference voltage selected to become lower than the voltage for conversion during the decrease thereof; and means for storing, on the one hand a reference associated with the constant reference voltage which is immediately lower than or equal to the voltage for conversi
Abstract: This electromagnetic radiation detector comprises a reflecting substrate and at least one detection element comprising a membrane sensitive to said radiation and suspended above the substrate. The distance between the membrane and at least one detection element and the substrate is variable, said distance having a predefined spatial distribution suitable for minimizing the rapid variations of a response of the radiation detector in at least one predefined wavelength range.
Abstract: The invention relates to a device for detecting an electromagnetic radiation comprising a resistive imaging bolometer sensitive to the electromagnetic radiation to be detected, intended to be connected electrically to a signal shaping circuit, and a resistive common mode rejection bolometer that is associated electrically with the imaging bolometer, so that the current flowing through the common mode rejection bolometer is subtracted from the current flowing through the imaging bolometer, wherein it comprises means for controlling the resistance of the common mode rejection bolometer by injecting current therein.
Type:
Grant
Filed:
December 5, 2008
Date of Patent:
August 16, 2011
Assignee:
ULIS
Inventors:
Beno{hacek over (i)}t Dupont, Michel Vilain
Abstract: The invention relates to a method for controlling the resistance of a bolometer in a bolometer matrix of a sensor, said sensor comprising a circuit for reading said matrix which is capable of addressing said bolometer. According to the invention, the method comprises a step (46) of adjusting the recurrence of addressing the bolometer using the read circuit.
Abstract: This electromagnetic radiation detector consists of a plurality of elementary detection micro-sites, each including a micro-detector provided with a membrane (2) that is sensitive to the radiation in question and each being provided in a micro-cavity or micro-capsule defined by a substrate (1), by an upper wall (5) used as a window that is transparent to said radiation and by side walls (4), said membrane (2) being suspended above substrate (1) by means of at least two support arms (6) that include an electrically conducting layer (17), with the ends of said arms (6) being anchored in side walls (4).
Abstract: A device for detecting infrared radiation comprising an array of bolometric detectors which are sensitive to incident radiation and are referred to as “active” and a bolometer which is insensitive to said radiation and is referred to as “blind” formed on a substrate in which a read circuit is produced for sequentially addressing each of the rows of detectors of the array, each of the active bolometers in a single row being biased simultaneously. The read circuit also comprises means of producing a reference current (Iref) based on the blind bolometer; means of simultaneously copying the reference current (Iref) for each column of the array; and a plurality of current integrators, each associated with one column of the array and each designed to integrate the difference between the current flowing through the active bolometer of the row which is currently being read and said thus copied reference current.
Abstract: An infrared radiation detection device comprising: a substrate; a matrix of at least one line of elements for detecting said radiation, each comprising a resistive imaging bolometer, said matrix being formed above the substrate; means for reading the bolometers of the matrix, means for measuring the temperature in at least one point of the substrate; and means for correcting the signal formed from each bolometer as a function of the temperature measured in at least one point of the substrate. The correcting means are capable of correcting the signal formed from the imaging bolometer by means of a predetermined physical model of the temperature behaviour of said signal.
Type:
Application
Filed:
November 30, 2010
Publication date:
March 24, 2011
Applicant:
Ulis
Inventors:
Benoît Dupont, Aurélie Touvignon, Michel Vilain, Antoine Dupret
Abstract: The invention relates to a device for the detection of an electromagnetic radiation including: a substrate; a resistive imaging bolometer; a circuit for polarizing the bolometer at a predetermined voltage; a rejection circuit generating a common mode current, comprising a compensation bolometer thermalized in the substrate and a polarization circuit thereof; and a measuring circuit for measuring the difference between the current flowing in the imaging bolometer when it is polarized and the common mode current generated by the rejection circuit. According to the invention, the rejection circuit further comprises a current generator capable of producing a current that simulates the current induced by the self-heating of the imaging bolometer under the effect of its polarization, the sum of the current passing through the compensation bolometer and the current generated by the current generator forming the common mode current.
Abstract: The invention relates to a device for detecting electromagnetic radiation comprising: a resistive bolometer, a biasing circuit capable of biasing said bolometer with a predetermined bias voltage, a rejection module capable of generating a common mode current, a measuring circuit capable of being connected to a bolometer and a rejection module in order to measure the difference between the current flowing through the bolometer when it is biased and the common mode current generated by the rejection module. According to the invention, rejection module comprises: a module for estimating a current that flows through resistive bolometer when it is subjected to the bias voltage and made insensitive to the electromagnetic radiation; and a current generator which is controlled by the estimation module and generates the current estimated by the latter as a common mode current.
Abstract: A device for detecting electromagnetic radiation, especially infrared radiation, including an array of elementary bolometers which are sensitive to the incident radiation and are referred to as “active” bolometers and an additional row of bolometers which are substantially insensitive to the radiation and are referred to as “blind” bolometers. The active and blind bolometers are formed on a substrate in which a read circuit is produced for sequential addressing of each of the rows of the array and the row of blind bolometers, each of the bolometers in the same row being biased simultaneously. The read circuit includes a source for producing a reference current (Iref) on the basis of an additional blind bolometer which is also formed on the substrate and means of copying the reference current (Iref) to each of the columns of the array consisting of a current mirror.
Abstract: This detector comprises an assembly of elementary sensors capable of detecting said radiation. This assembly comprises at least two separate detection areas, a first detection area comprising elementary sensors having a first thermal time constant and a second detection area comprising elementary sensors having a second thermal time constant which is different to said first thermal time constant.
Abstract: A device for detecting infrared radiation including a resistive imaging bolometer, a mechanism for measuring drift in the electrical resistance of the bolometer relative to a reference value of the electrical resistance of the bolometer which corresponds to predetermined operating conditions of the bolometer, and a mechanism for correcting the effects of the drift in resistance or for correcting the drift itself.
Abstract: A component for detecting electromagnetic radiation comprises: a housing defining a chamber placed under a vacuum or underpressure, one of the faces of the housing including a window which is transparent to the radiation to be detected and the chamber including at least one detector which is used to detect the radiation in question and is arranged inside said chamber essentially against the transparent window, a getter in order to maintain the vacuum or underpressure in the chamber at an acceptable level, and a thermal stabilization device for ensuring regulation of temperature of the detector(s). The thermal stabilization device consists of a heating resistive element which is integrated into the mass of one of the walls defining the housing.
Abstract: A method of digitizing an analog quantity from an electromagnetic radiation detector including a matrix of juxtaposed elementary sensors, including, for each line or column of the matrix, the steps of: integrating the analog quantity using an integrator stage; converting the integrated analog quantity to a first numerical value via a binary counter and a memory element connected to the output of a comparator stage; converting the first numerical value to an analog signal via an analog-to-digital converter; subtracting the analog signal from the analog quantity to be digitized; amplifying the signal resulting from the subtraction with a gain representing the first numerical value; integrating to produce a second numerical value proportional to the analog signal thereby amplified and forming a second binary number representing the least significant bits; and adding said first and second numerical values to form a number representative of the analog quantity to be integrated.
Abstract: A detector for detecting electromagnetic radiation includes a substrate and at least one microstructure including a radiation-sensitive membrane extending substantially opposite and away from the substrate. The membrane is mechanically attached to at least two longilinear, collinear retention elements, at least one of which is mechanically connected to the substrate by an intermediate post. The membrane is in electrical continuity with the substrate. At least two collinear legs are attached to each other at the level of their ends which are attached to the membrane by a mechanical connector which is substantially co-planar with the legs and membrane. The other end of at least one of the legs is integral with a rigid cross piece which is substantially co-planar with the legs and extends substantially at right angles relative to the main dimension of the legs. The cross piece is integral with the post which is integral with the substrate.