Abstract: The invention relates to a device for detecting an electromagnetic radiation comprising a resistive imaging bolometer sensitive to the electromagnetic radiation to be detected, intended to be connected electrically to a signal shaping circuit, and a resistive common mode rejection bolometer that is associated electrically with the imaging bolometer, so that the current flowing through the common mode rejection bolometer is subtracted from the current flowing through the imaging bolometer, wherein it comprises means for controlling the resistance of the common mode rejection bolometer by injecting current therein.
Abstract: A device for detecting infrared radiation comprising a resistive imaging bolometer intended to be electrically connected to a circuit for measuring a resistance of the bolometer. It comprises means of controlling the resistance of the imaging bolometer by injecting current into the bolometer.
Abstract: A component for detecting electromagnetic radiation comprises: a housing defining a chamber placed under a vacuum or underpressure, one of the faces of the housing including a window which is transparent to the radiation to be detected and the chamber including at least one detector which is used to detect the radiation in question and is arranged inside said chamber essentially against the transparent window, a pump for pumping the residual gases or getter in order to maintain the vacuum or underpressure in the chamber at an acceptable level, and a thermal stabilisation device for ensuring regulation of temperature of the detector(s). The thermal stabilisation device consists of a heating resistive element which is integrated into the mass of one of the walls defining the housing.
Abstract: The invention relates to a passive microbolometer (12), comprising a reflective screen (17) and a suspended membrane with the function of radiation absorber, thermometer and electrical connection. The membrane is supported by at least two anchor elements (15) fixed to a support substrate (16). The reflective screen (17) may be embodied by at least one layer (18) of metallic material with a thickness of the order of 500 ? to 2000 ?. The screen (17) is arranged beneath the membrane in electrical contact with the membrane absorber element (13) such as to reduce the area resistance of the unit made up of the screen (17) and the absorbing element (13) and to avoid the absorption of radiation by the latter.
Type:
Grant
Filed:
March 4, 2005
Date of Patent:
June 2, 2009
Assignees:
Commissariat a l'Energie Atomique, Ulis
Inventors:
Jean-Louis Ouvrier-Buffet, Laurent Carle, Claire Vialle, Michel Vilain
Abstract: This electromagnetic radiation detector comprises a reflecting substrate and at least one detection element comprising a membrane sensitive to said radiation and suspended above the substrate. The distance between the membrane and at least one detection element and the substrate is variable, said distance having a predefined spatial distribution suitable for minimizing the rapid variations of a response of the radiation detector in at least one predefined wavelength range.
Abstract: A device for detecting infrared radiation comprising an array of bolometric detectors which are sensitive to incident radiation and are referred to as “active” and a bolometer which is insensitive to said radiation and is referred to as “blind” formed on a substrate in which a read circuit is produced for sequentially addressing each of the rows of detectors of the array, each of the active bolometers in a single row being biased simultaneously. The read circuit also comprises means of producing a reference current (Iref) based on the blind bolometer; means of simultaneously copying the reference current (Iref) for each column of the array; and a plurality of current integrators, each associated with one column of the array and each designed to integrate the difference between the current flowing through the active bolometer of the row which is currently being read and said thus copied reference current.
Abstract: A device for detecting electromagnetic radiation, especially infrared radiation, including an array of elementary bolometers which are sensitive to the incident radiation and are referred to as “active” bolometers and an additional row of bolometers which are substantially insensitive to the radiation and are referred to as “blind” bolometers. The active and blind bolometers are formed on a substrate in which a read circuit is produced for sequential addressing of each of the rows of the array and the row of blind bolometers, each of the bolometers in the same row being biased simultaneously. The read circuit includes a source for producing a reference current (Iref) on the basis of an additional blind bolometer which is also formed on the substrate and means of copying the reference current (Iref) to each of the columns of the array consisting of a current mirror.
Abstract: This electronic detection device comprises a substrate and at least one microstructure, said microstructure comprising a membrane which extends substantially facing and at a distance from said substrate, said membrane being mechanically attached and electrically connected to at least one longilineal retention element which is mechanically and electrically connected to said substrate via at least one post. The device also comprises at least one stiffener element extending over at least one of the main faces of said microstructure.
Abstract: A bolometric detector for electromagnetic radiation comprising a sensitive part or membrane comprising one or more layers of a sensitive material, the resistivity of which varies with temperature; first electric conductor elements in electrical continuity with a readout circuit associated with the bolometric detector and acting as electrodes for the detector and being in contact with the sensitive material and acting as an electromagnetic radiation absorber; second electric conductor elements at a floating potential acting only as an electromagnetic radiation absorber; at least one support area for the sensitive part fulfilling the function of positioning the sensitive part and electric conductor in relation to the readout circuit; at least one thermal isolation structure electrically and mechanically linking each support area to the sensitive part.
Abstract: A method of digitizing an analog quantity from an electromagnetic radiation detector including a matrix of juxtaposed elementary sensors, including, for each line or column of the matrix, the steps of: integrating the analog quantity using an integrator stage; converting the integrated analog quantity to a first numerical value via a binary counter and a memory element connected to the output of a comparator stage; converting the first numerical value to an analog signal via an analog-to-digital converter; subtracting the analog signal from the analog quantity to be digitized; amplifying the signal resulting from the subtraction with a gain representing the first numerical value; integrating to produce a second numerical value proportional to the analog signal thereby amplified and forming a second binary number representing the least significant bits; and adding said first and second numerical values to form a number representative of the analog quantity to be integrated.
Abstract: This electronic detection device comprises a substrate and at least one microstructure, said microstructure comprising a membrane which extends substantially facing and at a distance from said substrate, said membrane being mechanically attached and electrically connected to at least one longilineal retention element which is mechanically and electrically connected to said substrate via at least one post. The device also comprises at least one stiffener element extending over at least one of the main faces of said microstructure.
Abstract: This detector comprises an assembly of elementary sensors capable of detecting said radiation. This assembly comprises at least two separate detection areas, a first detection area comprising elementary sensors having a first thermal time constant and a second detection area comprising elementary sensors having a second thermal time constant which is different to said first thermal time constant.
Abstract: The absorbent membrane of the detector is fixed in suspension by at least one thermally insulating support part onto a front face of a substrate comprising at least two electric connection terminals electrically connected to the membrane, for example by means of conducting layers. The support part has at least one base end and a raised zone. The base end is fixed to a top part of a conducting pillar having a base fixedly secured to one of the electric connection terminals. A substantially flat zone of a bottom face of the membrane is directly in contact with the raised zone of the support part. The support part is preferably formed by a bridge having a second base end fixed to a top part of a second pillar, the raised zone being formed by a flat middle part of the bridge.
Type:
Grant
Filed:
August 19, 2005
Date of Patent:
November 13, 2007
Assignees:
Commissariat A l'Energie Atomique, ULIS
Inventors:
Jean-Jacques Yon, Astrid Astier, Michel Vilain
Abstract: This device for detecting infrared radiation comprises a one or two-dimensional array of elementary bolometric detectors, that are electrically connected to a readout circuit (1), which is associated with a compensation structure intended to divert most of the background or common-mode current that flows through each of the bolometric detectors in the array. The compensation structure consists of a layer that incorporates at least one bolometric material (8) extending between two electrical connection areas (3, 6, 7) linked to the readout circuit (1). The layer that incorporates the bolometric material (8) that constitutes the compensation structure is itself in thermal contact with the substrate that constitutes the readout circuit (1) outside the electrical connection areas (3, 6, 7).
Abstract: An infrared detection device including a matrix of bolometric detectors electrically connected to a reading circuit. Each of the detectors includes at least two electrically conductive thermal insulation structures insulated from one another and fitted in contact at one of their ends with an active zone consisting of a bolometric material. One of the structures is electrically connected at its other end to the reading circuit by a cold electrical connection that is kept at a substantially constant potential. The other structure is electrically connected at its other end to the reading circuit by a hot electrical connection, which is connected in series with a switch integrated into the reading circuit. At least two adjacent bolometric detectors are connected by a common electrical connection to the substantially constant potential of the reading circuit.
Abstract: A bolometric detector including a sensitive part having one or more layers of a sensitive material, the resistivity of which varies with temperature, electrodes isolated from one another, also acting as infrared radiation absorbers, the electrodes being in contact with the sensitive material over at least part of their surface, at least one support region for supporting the sensitive part, acting so as to position the sensitive part, and acting as an electrical conductor, in relation to a read circuit associated with the bolometric detector, and at least one thermal insulation structure electrically and mechanically connecting each support region to the sensitive part. The regions of sensitive material not in contact with the electrodes have at least one corrugation oriented along the direction perpendicular to the plane containing the sensitive part of the bolometric detector.
Abstract: A bolometric detector for electromagnetic radiation comprising a sensitive part or membrane comprising one or more layers of a sensitive material, the resistivity of which varies with temperature; first electric conductor elements in electrical continuity with a readout circuit associated with the bolometric detector and acting as electrodes for the detector and being in contact with the sensitive material and acting as an electromagnetic radiation absorber; second electric conductor elements at a floating potential acting only as an electromagnetic radiation absorber; at least one support area for the sensitive part fulfilling the function of positioning the sensitive part and electric conductor in relation to the readout circuit; at least one thermal isolation structure electrically and mechanically linking each support area to the sensitive part.
Abstract: This component for detecting electromagnetic radiation, particularly infrared radiation, comprises a vacuum or low-pressure enclosure (5) called the primary enclosure, one side (3) of which consists of a window (4) that is transparent to the radiation to be detected, at least one actual detector (6) located inside said enclosure substantially opposite the transparent window (4) and a means (13) of pumping residual gases or getter intended to maintain the vacuum inside said enclosure (5) at an acceptable level located inside a secondary enclosure (20) arranged outside the primary enclosure (5) and communicating freely with the latter.
Abstract: This device for detecting infrared radiation comprises a one or two-dimensional array of elementary bolometric detectors, that are electrically connected to a readout circuit (1), which is associated with a compensation structure intended to divert most of the background or common-mode current that flows through each of the bolometric detectors in the array. The compensation structure consists of a layer that incorporates at least one bolometric material (8) extending between two electrical connection areas (3, 6, 7) linked to the readout circuit (1). The layer that incorporates the bolometric material (8) that constitutes the compensation structure is itself in thermal contact with the substrate that constitutes the readout circuit (1) outside the electrical connection areas (3, 6, 7).
Abstract: The absorbent membrane of the detector is fixed in suspension by at least one thermally insulating support part onto a front face of a substrate comprising at least two electric connection terminals electrically connected to the membrane, for example by means of conducting layers. The support part has at least one base end and a raised zone. The base end is fixed to a top part of a conducting pillar having a base fixedly secured to one of the electric connection terminals. A substantially flat zone of a bottom face of the membrane is directly in contact with the raised zone of the support part. The support part is preferably formed by a bridge having a second base end fixed to a top part of a second pillar, the raised zone being formed by a flat middle part of the bridge.
Type:
Application
Filed:
August 19, 2005
Publication date:
March 16, 2006
Applicants:
Commissariat a I'Energie Atomique, ULIS
Inventors:
Jean-Jacques Yon, Astrid Astier, Michel Vilain