Patents Assigned to ULVAC, Inc.
-
Publication number: 20220145443Abstract: A vapor deposition unit of this invention is provided with: a container box for containing therein a vapor deposition material; and a heating means for heating the vapor deposition material inside the container box, and which has formed in one plane of the container box a discharge opening for discharging a sublimated or evaporated vapor deposition material as a result of heating. The vapor deposition unit is further provided, inside a storing chamber, with a moving means for moving the vapor deposition unit. Provided that a direction looking toward the opening in the storing chamber is defined as an upper side, the moving means moves the vapor deposition unit disposed in the storing chamber in an up-and-down direction in a posture coinciding with a phase of the discharge opening.Type: ApplicationFiled: December 27, 2019Publication date: May 12, 2022Applicant: ULVAC, INC.Inventors: Shuuji Saitou, Akihiro Yokoyama
-
Publication number: 20220145441Abstract: The invention provides a film formation apparatus that includes: a transfer unit that transfers a substrate; a film formation unit that forms an electrolyte film on a film formation region of the substrate transferred by the transfer unit; and an extraneous-material removal unit that comes into contact with the electrolyte film of the substrate transferred by the transfer unit after film formation of the film formation unit and thereby removes extraneous materials contained in the film formation region.Type: ApplicationFiled: December 22, 2020Publication date: May 12, 2022Applicant: ULVAC, Inc.Inventors: Manabu GIBO, Takayoshi HIRONO, Yoshiki ISO
-
Publication number: 20220145445Abstract: Provided is a sputtering apparatus which is capable of suppressing a local temperature rise at an outer peripheral part of a to-be-processed substrate. The sputtering apparatus SM has: a vacuum chamber [[1]] in which a target [[2]] and the to-be-processed substrate Sw are disposed face-to-face with each other; a shield plate [[5]] for enclosing a film forming space [[1a]] between the target and the to-be-processed substrate; and a cooling unit for cooling the shield plate. The shield plate [[5]] has a first shield plate part [[5a]] which is disposed around the to-be-processed substrate and which has a first opening [[51]] equivalent in contour to the to-be-processed substrate. The cooling unit includes a first coolant passage [[55]] which is disposed in the first shield plate part and which has a passage portion [[55a]] extending all the way to the first shield plate part positioned around the first opening.Type: ApplicationFiled: October 18, 2021Publication date: May 12, 2022Applicant: ULVAC, INC.Inventors: Koji Suzuki, Hideto Nagashima, Yukihito Tashiro
-
Publication number: 20220145449Abstract: In a vacuum processing apparatus for performing a predetermined vacuum processing on a surface of a sheet-like base material while keeping the base material to travel inside the vacuum chamber, the can-roller of this invention disposed to lie opposite to a vacuum processing unit has an axial body; an inner cylindrical body to be inserted onto an outside of the axial body; an outer cylindrical body enclosing an outer cylindrical surface of the inner cylindrical body with a gap therebetween, and cover bodies for respectively closing axial both ends of the inner cylindrical body. Each of the cover bodies has a plurality of flow passages. A cross-section of each of the fluid passages overlaps a cross-section of the cover body. A cross-sectional area of the gap between the inner cylindrical body and the outer cylindrical body is set to a size that can obtain a predetermined flow velocity.Type: ApplicationFiled: December 27, 2019Publication date: May 12, 2022Applicant: ULVAC, INC.Inventor: Shuuji Saitou
-
Patent number: 11319630Abstract: [Object] To make it difficult for components other than films to be contained in a lamination interface. [Solving Means] In a deposition apparatus, a vacuum chamber includes a partition wall which defines a plasma formation space and includes quartz. An deposition preventive plate is provided between at least a part of the partition wall and the plasma formation space and includes at least one of yttria, silicon nitride, or silicon carbide. On a support stage, a substrate including a trench or hole including a bottom portion and a side wall is capable of being disposed. A plasma generation source generates first plasma of deposition gas including silicon introduced into the plasma formation space to thereby form a semiconductor film including silicon on the bottom portion and the side wall. The plasma generation source generates second plasma of etching gas including halogen introduced into the plasma formation space to thereby selectively remove the semiconductor film formed on the side wall.Type: GrantFiled: November 7, 2017Date of Patent: May 3, 2022Assignee: ULVAC, INC.Inventor: Kazuhiko Tonari
-
Patent number: 11320200Abstract: A freeze-drying method includes depressurizing containers filled with a liquid including a raw material and a medium with a freeze-drying device to freeze the liquid from a liquid surface. The depressurizing includes executing an exhaust mitigation process that performs the depressurizing at an exhaust capability that is less than a rated exhaust capability of the freeze-drying device, and using a partial pressure value of the medium to determine when the exhaust mitigation process ends. The executing an exhaust mitigation process includes maintaining an exhaust speed of a gas capture pump configured to discharge gas from a freeze-drying chamber accommodating the containers, and decreasing an exhaust speed of a positive-displacement pump configured to discharge gas from a space accommodating the gas capture pump.Type: GrantFiled: September 22, 2021Date of Patent: May 3, 2022Assignee: ULVAC, INC.Inventors: Tsuyoshi Yoshimoto, Yoichi Ohinata, Tomomitsu Ozeki
-
Patent number: 11319627Abstract: Provided is a vacuum processing apparatus which is capable of performing baking processing of a deposition preventive plate without impairing the function of being capable of cooling the deposition preventive plate disposed inside a vacuum chamber. The vacuum processing apparatus has a vacuum chamber for performing a predetermined vacuum processing on a to-be-processed substrate that is set in position inside the vacuum chamber. A deposition preventive plate is disposed inside the vacuum chamber. Further disposed are: a metallic-made block body vertically disposed on an inner surface of the lower wall of the vacuum chamber so as to lie opposite to a part of the deposition preventive plate with a clearance thereto; a cooling means for cooling the block body; and a heating means disposed between the part of the deposition preventive plate and the block body to heat the deposition preventive plate by heat radiation.Type: GrantFiled: July 23, 2019Date of Patent: May 3, 2022Assignee: ULVAC, INC.Inventor: Yoshinori Fujii
-
Patent number: 11309454Abstract: A deep ultraviolet LED with a design wavelength ?, including a reflecting electrode layer (Au), a metal layer (Ni), a p-GaN contact layer, a p-block layer made of a p-AlGaN layer, an i-guide layer made of an AlN layer, a multi-quantum well layer, an n-AlGaN contact layer, a u-AlGaN layer, an AlN template, and a sapphire substrate that are arranged in this order from a side opposite to the sapphire substrate, in which the thickness of the p-block layer is 52 to 56 nm, a two-dimensional reflecting photonic crystal periodic structure having a plurality of voids is provided in a region from the interface between the metal layer and the p-GaN contact layer to a position not beyond the interface between the p-GaN contact layer and the p-block layer in the thickness direction of the p-GaN contact layer, the distance from an end face of each of the voids in the direction of the sapphire substrate to the interface between the multi-quantum well layer and the i-guide layer satisfies ?/2n1Deff (where ? is the design wavType: GrantFiled: January 25, 2019Date of Patent: April 19, 2022Assignees: Marubun Corporation, Shibaura Machine Co., Ltd., RIKEN, ULVAC, Inc., Tokyo Ohka Kogyo Co., Ltd., Nippon Tungsten Co., Ltd., Dai Nippon Printing Co., Ltd., Dowa Holdings Co., Ltd.Inventors: Yukio Kashima, Eriko Matsuura, Mitsunori Kokubo, Takaharu Tashiro, Hideki Hirayama, Noritoshi Maeda, Masafumi Jo, Ryuichiro Kamimura, Yamato Osada, Kanji Furuta, Takeshi Iwai, Yohei Aoyama, Yasushi Iwaisako, Tsugumi Nagano, Yasuhiro Watanabe
-
Patent number: 11286554Abstract: The sputtering apparatus has a vacuum chamber in which is disposed a target. While rotating a circular substrate at a predetermined rotational speed with a center of the substrate, the target is sputtered to form the thin film on the surface. The sputtering apparatus has: a stage for rotatably holding the substrate in a state in which the center of the substrate is offset by a predetermined distance to radially one side from the center of the target; and a shielding plate disposed between the target and the substrate on the stage. The shielding plate has an opening part allowing to pass sputtered particles scattered out of the target as a result of sputtering the target. The opening part has a contour in which, with a central region of the substrate serving as an origin, the area of the opening part gradually increases from the origin toward radially outward.Type: GrantFiled: June 25, 2018Date of Patent: March 29, 2022Assignee: ULVAC, INC.Inventors: Katsuaki Nakano, Kanji Yaginuma
-
Publication number: 20220056571Abstract: A film forming method is provided in which, when a dielectric film is formed by sputtering a target, the number of particles to get adhered to the surface of a to-be-processed substrate immediately after film formation can be decreased to the extent possible without impairing the function of effectively suppressing the induction of abnormal discharging. A film forming method, according to this invention, of forming a dielectric film on a surface of a to-be-processed substrate by sputtering a target inside a vacuum chamber includes: at the time of sputtering the target, applying negative potential to the target in the form of pulses; and a frequency of applying the negative potential in the form of pulses is set to a range of 100 kHz or more and 150 kHz or below and an application time (Ton) of the negative potential is set to a range of 5 ?sec or longer and 8 ?sec or shorter.Type: ApplicationFiled: July 9, 2020Publication date: February 24, 2022Applicant: ULVAC, INC.Inventors: Kengo Tsutsumi, Shinji Kohari, Kouji Sogabe, Toshimitsu Uehigashi, Takahiro Nanba
-
Publication number: 20220044938Abstract: A silicon dry etching method of the invention, includes: preparing a silicon substrate; forming a mask pattern having an opening on the silicon substrate; forming a deposition layer on the silicon substrate in accordance with the mask pattern while introducing a first gas; carrying out a dry etching process with respect to the silicon substrate in accordance with the mask pattern while introducing a second gas, and thereby forming a recess pattern on a surface of the silicon substrate; and carrying out an ashing process with respect to the silicon substrate while introducing a third gas.Type: ApplicationFiled: August 3, 2021Publication date: February 10, 2022Applicant: ULVAC, Inc.Inventors: Kenta DOI, Toshiyuki SAKUISHI, Toshiyuki NAKAMURA, Yasuhiro MORIKAWA
-
Patent number: 11239064Abstract: A magnet unit for a magnetron sputtering apparatus is disposed above the target has: a yoke made of magnetic material and is disposed to lie opposite to the target; and plural pieces of magnets disposed on a lower surface of the yoke, wherein a leakage magnetic field in which a line passing through a position where the vertical component of the magnetic field becomes zero is closed in an endless manner, is caused to locally act on such a lower space of the target as is positioned between the center of the target and a periphery thereof, the magnet unit being driven for rotation about the center of the target. In a predetermined position of the yoke there is formed a recessed groove in a circumferentially elongated manner along an imaginary circle with the center of the target serving as a center.Type: GrantFiled: July 23, 2019Date of Patent: February 1, 2022Assignee: ULVAC, INC.Inventors: Yoshinori Fujii, Shinya Nakamura
-
Patent number: 11239063Abstract: A magnet unit for a magnetron sputtering apparatus is disposed above the target has: a yoke made of magnetic material and is disposed to lie opposite to the target; and plural pieces of magnets disposed on a lower surface of the yoke, wherein a leakage magnetic field in which a line passing through a position where the vertical component of the magnetic field becomes zero is closed in an endless manner, is caused to locally act on such a lower space of the target as is positioned between the center of the target and a periphery thereof, the magnet unit being driven for rotation about the center of the target. In a predetermined position of the yoke there is formed a recessed groove in a circumferentially elongated manner along an imaginary circle with the center of the target serving as a center.Type: GrantFiled: July 23, 2019Date of Patent: February 1, 2022Assignee: ULVAC, INC.Inventor: Yoshinori Fujii
-
Patent number: 11230760Abstract: A sputtering apparatus SM has: a vacuum chamber in which a substrate and a target are disposed to lie opposite to each other; a plasma generating means generating a plasma inside the vacuum chamber; and a magnet unit disposed above the target. The magnet unit has a plurality of magnets with different polarities on a substrate side. A leakage magnetic field in which a line passing through a position where a vertical component of the magnetic field becomes zero is closed in an endless manner, is caused to locally act on such a space below the target as is positioned between the center of the target and a periphery thereof. The magnet unit is divided, on an imaginary line extending from the center of the target toward a periphery thereof, into a plurality of segments each having a plurality of magnets.Type: GrantFiled: July 23, 2019Date of Patent: January 25, 2022Assignee: ULVAC, INC.Inventors: Yoshinori Fujii, Shinya Nakamura
-
Patent number: 11195929Abstract: A gate structure for effective work function adjustments of semiconductor devices that includes a gate dielectric on a channel region of a semiconductor device; a first metal nitride in direct contact with the gate dielectric; a conformal carbide of Aluminum material layer having an aluminum content greater than 30 atomic wt. %; and a second metal nitride layer in direct contact with the conformal aluminum (Al) and carbon (C) containing material layer. The conformal carbide of aluminum (Al) layer includes aluminum carbide, or Al4C3, yielding an aluminum (Al) content up to 57 atomic % (at. %) and work function setting from 3.9 eV to 5.0 eV at thicknesses below 25 ?. Such structures can present metal gate length scaling and resistance benefit below 25 nm compared to state of the art work function electrodes.Type: GrantFiled: October 30, 2019Date of Patent: December 7, 2021Assignees: International Business Machines Corporation, ULVAC, INC.Inventors: Takashi Ando, Ruqiang Bao, Masanobu Hatanaka, Vijay Narayanan, Yohei Ogawa, John Rozen
-
Patent number: 11189482Abstract: A thin film formation method includes setting a film formation subject to 200° C. or higher. A first step includes changing a first state, in which a film formation material and a carrier gas are supplied so that the film formation material collects on the film formation subject, to a second state, in which the film formation material is omitted. A second step includes changing a third state, in which a hydrogen gas and a carrier gas are supplied to reduce the film formation material, to a fourth state, in which the hydrogen gas is omitted. The film formation material is any one of Al(CxH2x+1)3, Al(CxH2x+1)2H, and Al(CxH2x+1)2Cl. The first step and the second step are alternately repeated to form an aluminum carbide film on the film formation subject such that a content rate of aluminum atoms is 20 atomic percent or greater.Type: GrantFiled: May 11, 2018Date of Patent: November 30, 2021Assignees: ULVAC, INC., INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Masanobu Hatanaka, Yohei Ogawa, Keon-chang Lee, Nobuyuki Kato, Takakazu Yamada, John Rozen
-
Patent number: 11189784Abstract: A method includes forming an amorphous magnetic film on a film formation subject by sputtering a target that includes any one selected from a group consisting of Mn3Sn, Mn3Ge, and (Mn1-xFex)Ge as a main component and crystalizing the amorphous magnetic film by heating the amorphous magnetic film. The crystalizing includes heating the amorphous magnetic film to a temperature that is greater than or equal to 225° C. and less than or equal to 400° C.Type: GrantFiled: February 14, 2019Date of Patent: November 30, 2021Assignee: ULVAC, INC.Inventors: Seungjun Oh, Tadashi Morita, Tatsuhiro Nozue
-
Publication number: 20210319985Abstract: A vacuum processing apparatus SM of this invention has: a vacuum chamber which performs a predetermined processing on a to-be-processed substrate that is set in position in the vacuum chamber. Inside the vacuum chamber there is disposed a deposition preventive plate) which is made up of a fixed deposition preventive plate and a moveable deposition preventive plate which is moveable in one direction. Further provided are: a metal block body disposed in a vertical posture on an inner wall surface of the vacuum chamber; and a cooling means for cooling the block body. In a processing position in which a predetermined vacuum processing is performed on the to-be-processed substrate, a top surface of the block body is arranged to be in proximity to or in contact with the moveable deposition preventive plate.Type: ApplicationFiled: September 12, 2019Publication date: October 14, 2021Applicant: ULVAC, INC.Inventors: Koji Suzuki, Hideto Nagashima, Yoshinori Fujii
-
Publication number: 20210292886Abstract: A sputtering apparatus (SM) has a vacuum chamber in which is disposed a target. A plasma atmosphere is formed inside the vacuum chamber to thereby sputter the target. The sputtered particles splashed from the target are caused to get adhered to, and deposited on, a surface of a substrate disposed in the vacuum chamber, thereby forming a predetermined thin film thereon. At such a predetermined position inside the vacuum chamber as is subject to adhesion of the sputtered particles splashed from the target, there is disposed an adhesion body whose at least the surface of adhesion of the sputtered particles is made of a material equal in kind to that of the target. The adhesion body has connected thereto a bias power supply for applying a bias voltage having negative potential at the time of forming the plasma atmosphere.Type: ApplicationFiled: September 12, 2019Publication date: September 23, 2021Applicant: ULVAC, INC.Inventor: Katsuaki Nakano
-
Patent number: 11111577Abstract: A film formation apparatus includes a target containing a magnetic material, a support that supports a substrate and locates the substrate in an arrangement region opposing the target, and a magnetic field formation unit located at a side of the arrangement region opposite to the target. The magnetic field formation unit forms a horizontal magnetic field parallel to an oscillation direction, which is one direction extending along the substrate, at a side of the arrangement region where the target is located. The magnetic field formation unit oscillates the horizontal magnetic field in the oscillation direction at least between one end of the arrangement region and another end of the arrangement region in the oscillation direction.Type: GrantFiled: February 27, 2017Date of Patent: September 7, 2021Assignee: ULVAC, INC.Inventors: Yousuke Kobayashi, Harunori Iwai, Tetsushi Fujinaga, Atsuhito Ihori, Noriaki Tani