Patents Assigned to Umicore Shokubai Japan Co., Ltd.
  • Patent number: 11110436
    Abstract: A phosphorus compound-containing exhaust gas purifying catalyst includes: a refractory three-dimensional structure extending from a gas inflow side end surface to a gas outflow side end surface, the refractory three-dimensional structure having cell walls that define and form multiple gas flow paths, the gas flow paths running from the gas inflow side end surface to the gas outflow side end surface; a lower catalyst layer that contains Pd and is formed continuously from the gas inflow side end surface on the cell walls; a gas inflow side upper catalyst layer that contains Rh and is located as an uppermost layer on the cell walls; and a gas outflow side upper catalyst layer that contains Rh and is located as an uppermost layer on the cell walls.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: September 7, 2021
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Hirotaka Kuno, Masashi Nakashima, Kimihiro Nakama
  • Patent number: 11110396
    Abstract: An object is to provide a means for suppressing a deterioration in catalytic performance even after being exposed to high temperature exhaust gas containing a phosphorus compound for a long period of time. An exhaust gas purifying catalyst including palladium supported on cerium-aluminum composite oxide containing cerium at from 3 to 60% by mass in terms of cerium oxide.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: September 7, 2021
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Shigekazu Minami, Masanori Ikeda, Yuta Akasaka, Hirotaka Kuno, Hideki Goto
  • Patent number: 10967362
    Abstract: A catalyst for purification of exhaust gas containing a phosphorus compound includes: a lower catalyst layer containing at least one of noble metal provided on a refractory three-dimensional structure; and an upper catalyst layer at an inflow side of exhaust gas and an upper catalyst layer at an outflow side of exhaust gas provided on a surface of the lower catalyst layer. The upper catalyst layer at the inflow side and the upper catalyst layer at the outflow side have different concentrations of noble metal. The catalyst has an intermediate zone with a length of 3 to 23% of the overall length of the refractory three-dimensional structure provided between the upper catalyst layer at the inflow side and the upper catalyst layer at the outflow side. The intermediate zone starts from a position 10 to 38% from an end face of the catalyst at the inflow side of exhaust gas.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 6, 2021
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Hirotaka Kuno, Masashi Nakashima, Yuzo Hamada, Masanori Ikeda
  • Publication number: 20200384446
    Abstract: A phosphorus compound-containing exhaust gas purifying catalyst includes: a refractory three-dimensional structure extending from a gas inflow side end surface to a gas outflow side end surface, the refractory three-dimensional structure having cell walls that define and form multiple gas flow paths, the gas flow paths running from the gas inflow side end surface to the gas outflow side end surface; a lower catalyst layer that contains Pd and is formed continuously from the gas inflow side end surface on the cell walls; a gas inflow side upper catalyst layer that contains Rh and is located as an uppermost layer on the cell walls; and a gas outflow side upper catalyst layer that contains Rh and is located as an uppermost layer on the cell walls.
    Type: Application
    Filed: December 26, 2018
    Publication date: December 10, 2020
    Applicant: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Hirotaka KUNO, Masashi NAKASHIMA, Kimihiro NAKAMA
  • Publication number: 20200330964
    Abstract: An object of the present invention is to provide means for improving the hydrogen generation properties of a hydrogen-producing catalyst. A hydrogen-producing catalyst according to one aspect of the present invention comprises Rh and a composite containing Al, Ce, and Zr. When a ratio of the number of Al atoms to the number of Ce atoms (Al/Ce) in the composite measured by X-ray fluorescence (XRF) analysis is RI and a ratio of the number of Al atoms to the number of Ce atoms (Al/Ce,) in the composite measured by an Xray photoelectron spectroscopy (XPS) method is R2, a value of R2-R1 is greater than 2.25 and less than 5.92.
    Type: Application
    Filed: December 13, 2018
    Publication date: October 22, 2020
    Applicant: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Kenji ASHIKARI, Yuji OGINO, Yusuke HANEDA
  • Patent number: 10654030
    Abstract: The present invention provides exhaust gas purification catalyst for an internal combustion engine, and exhaust gas purification method using the catalyst. The present invention provides the exhaust gas purification catalyst including a support, a first catalyst layer on an upstream side, a second catalyst layer on a downstream side, and a third catalyst layer. In the exhaust gas purification catalyst, the upstream portion of the third catalyst layer is present on the first catalyst layer, the downstream portion of the third catalyst layer is present on the second catalyst layer, and in the middle portion between the upstream portion and the downstream portion of the third catalyst layer is present between the first catalyst layer and the second catalyst layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: May 19, 2020
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Kazuyoshi Komata, Hirotaka Kuno, Yuzo Hamada, Masashi Nakashima, Yuji Ogino, Masanori Ikeda
  • Patent number: 10653999
    Abstract: The present invention provides an exhaust gas purifying catalyst which can maintain high catalyst activity even after the exhaust gas purifying catalyst is exposed to an exhaust gas at a high temperature for a long period of time. The exhaust gas purifying catalyst contains a Pd—Pr complex and PdO, and the Pd—Pr complex is represented by PraPdbOc, where a=1 to 3, b=1 to 10, and c=1 to 6.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: May 19, 2020
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Kenji Ashikari, Masanori Ikeda, Shigekazu Minami, Masashi Nakashima, Hideki Goto
  • Publication number: 20200129962
    Abstract: In order to provide an exhaust gas purification catalyst capable of purifying hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas at low temperatures, the exhaust gas purification catalyst according to the present invention includes: a region (2) containing palladium on a three-dimensional structure (1), and a first region (3) and a second region (4) provided on the region (2) in order from an inflow side of exhaust gas to an outflow side of exhaust gas. The concentration of rhodium contained in the first region (3) is higher than the concentration of rhodium contained in the second region (4).
    Type: Application
    Filed: April 26, 2018
    Publication date: April 30, 2020
    Applicant: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Hirotaka KUNO, Takahiro IKEGAMI, Kosuke MIKITA, Masashi NAKASHIMA, Shigekazu MINAMI, Masanori IKEDA
  • Publication number: 20200049041
    Abstract: In order to provide an exhaust gas purification catalyst capable of purifying hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas at low temperatures, the exhaust gas purification catalyst according to the present invention includes: a region (2) containing palladium on a three-dimensional structure (1), and a first region (3) and a second region (4) provided on the region (2) in order from an inflow side of exhaust gas to an outflow side of exhaust gas. The concentration of neodymium contained in the first region (3) is higher than the concentration of neodymium contained in the second region (4).
    Type: Application
    Filed: April 26, 2018
    Publication date: February 13, 2020
    Applicant: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Hirotaka KUNO, Masashi NAKASHIMA, Kenji ASHIKARI, Yuji OGINO, Kazuyoshi KOMATA, Shigekazu MINAMI
  • Publication number: 20200047121
    Abstract: The present invention provides an exhaust gas purifying catalyst which can maintain high catalyst activity even after the exhaust gas purifying catalyst is exposed to an exhaust gas at a high temperature for a long period of time. The exhaust gas purifying catalyst contains a Pd—Pr complex and PdO, and the Pd—Pr complex is represented by PraPdbOc, where a=1 to 3, b=1 to 10, and c=1 to 6.
    Type: Application
    Filed: October 18, 2017
    Publication date: February 13, 2020
    Applicant: Umicore Shokubai Japan Co., Ltd.
    Inventors: Kenji Ashikari, Masanori IKEDA, Shigekazu MINAMI, Masashi NAKASHIMA, Hideki GOTO
  • Publication number: 20200049042
    Abstract: In order to provide an exhaust gas purification catalyst capable of purifying hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas at low temperatures, the exhaust gas purification catalyst according to the present invention includes: a region (2) containing palladium and yttrium on a three-dimensional structure (1), and a first region (3) and a second region (4) provided on the region (2) in order from an inflow side of exhaust gas to an outflow side of exhaust gas. The concentration of yttrium contained in the first region (3) and/or the second region (4) is higher than the concentration of yttrium contained in the region (2).
    Type: Application
    Filed: April 26, 2018
    Publication date: February 13, 2020
    Applicant: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Hirotaka KUNO, Masashi NAKASHIMA, Takahiro IKEGAMI, Kosuke MIKITA, Masanori IKEDA, Shigekazu MINAMI
  • Publication number: 20190291083
    Abstract: The present invention provides exhaust gas purification catalyst for an internal combustion engine, and exhaust gas purification method using the catalyst. The present invention provides the exhaust gas purification catalyst including a support, a first catalyst layer on an upstream side, a second catalyst layer on a downstream side, and a third catalyst layer. In the exhaust gas purification catalyst, the upstream portion of the third catalyst layer is present on the first catalyst layer, the downstream portion of the third catalyst layer is present on the second catalyst layer, and in the middle portion between the upstream portion and the downstream portion of the third catalyst layer is present between the first catalyst layer and the second catalyst layer.
    Type: Application
    Filed: July 20, 2017
    Publication date: September 26, 2019
    Applicant: Umicore Shokubai Japan Co., Ltd.
    Inventors: Kazuyoshi KOMATA, Hirotaka KUNO, Yuzo HAMADA, Masashi NAKASHIMA, Yuji OGINO, Masanori IKEDA
  • Patent number: 10376839
    Abstract: It is an object to provide an exhaust gas purification catalyst for a lean burn engine having sufficient NOx purification performance. The exhaust gas purification catalyst for a lean burn engine according to the present invention has a catalyst component including noble metal and ceria supported on a three-dimensional structure. In the whole catalyst, the supported amount of ceria per 1 L of catalyst is 140 to 300 g/L, and in the whole catalyst, is 50 to 98% by mass with respect to the whole coated amount. Furthermore, it is characterized that 50% by mass or more of ceria is included in the same catalyst layer in which noble metal is included, and the amount of noble metal included in the catalyst layer is 0.1% by mass or more with respect to the amount of ceria included in the catalyst layer.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: August 13, 2019
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Takahiro Umeno, Masaya Hanzawa, Yoshiyuki Hayashi
  • Publication number: 20190232258
    Abstract: A catalyst for purification of exhaust gas containing a phosphorus compound includes: a lower catalyst layer containing at least one of noble metal provided on a refractory three-dimensional structure; and an upper catalyst layer at an inflow side of exhaust gas and an upper catalyst layer at an outflow side of exhaust gas provided on a surface of the lower catalyst layer. The upper catalyst layer at the inflow side and the upper catalyst layer at the outflow side have different concentrations of noble metal. The catalyst has an intermediate zone with a length of 3 to 23% of the overall length of the refractory three-dimensional structure provided between the upper catalyst layer at the inflow side and the upper catalyst layer at the outflow side. The intermediate zone starts from a position 10 to 38% from an end face of the catalyst at the inflow side of exhaust gas.
    Type: Application
    Filed: July 20, 2017
    Publication date: August 1, 2019
    Applicant: Umicore Shokubai Japan Co., Ltd.
    Inventors: Hirotaka KUNO, Masashi NAKASHIMA, Yuzo HAMADA, Masanori IKEDA
  • Patent number: 10226755
    Abstract: The present invention is to provide a NOx storage reduction catalyst for purifying exhaust gas capable of efficiently removing carbon monoxide (CO), a hydrocarbon (HC), and a nitrogen oxide (NOx), in particular NOx, which are harmful components contained in exhaust gas. The NOx storage reduction catalyst for purifying exhaust gas of the present invention is characterized by being obtained by using a complex oxide of strontium and cerium as a catalytic active component, in which the complex oxide of strontium and cerium adsorbs 1.0 mL or less of oxygen per gram in a 400° C. atmosphere, and sinters a precursor at 300° C. or more.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: March 12, 2019
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Takahiro Umeno, Masaya Hanzawa, Yoshiyuki Hayashi
  • Patent number: 10150082
    Abstract: A catalyst and system for an internal combustion engine exhaust gas purification includes a first catalyst component region (a) having a catalyst component layer containing Rh at a concentration of 0.1 to 3.0 g/L at a length of 3 to 30 mm on an upstream side, a second catalyst component region (b) having a catalyst component layer containing Pd at a concentration of 1.0 to 20.0 g/L at a length of 10 to 100 mm on a downstream side, and a third catalyst region (c) containing rhodium at a concentration of 0.05 to 1.0 g/L and an oxygen storage material at a concentration of 30 to 150 g/L at a length of 25 to 150 mm on a monolithic support. The catalyst suppresses the formation and discharge of N2O from the exhaust gas with a small amount of a noble metal from the time of cold starting.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: December 11, 2018
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventor: Tatsuya Yoshikawa
  • Patent number: 9861961
    Abstract: An exhaust gas purification method by which carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx), particularly NOx, which are hazardous components contained in an exhaust gas can be removed efficiently. The disclosure relates to a catalyst for exhaust gas purification including: a three-dimensional structure; and a catalyst component layer composed of one or more constituting layers on the three-dimensional structure, wherein the catalyst component layer contains (a) a noble metal-unsupported alumina having mesopores, (b) NOx storage material-supported cerium, (c) a refractory inorganic oxide, and (d) a noble metal, and the constituting layer of the uppermost surface among the one or more constituting layers contains (a) the noble metal-unsupported alumina and (b) the NOx storage material-supported cerium, a method for producing the same, and an exhaust gas purification method using the catalyst.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: January 9, 2018
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Takahiro Umeno, Masaya Hanzawa, Yoshiyuki Hayashi
  • Patent number: 9561494
    Abstract: The purpose of the present invention is to provide a catalyst for exhaust gas purification, which is capable of effectively processing an exhaust gas, particularly carbon monoxide (CO) and hydrocarbon (HC) in the exhaust gas at a low temperature, and a method for producing the catalyst for exhaust gas purification. The purpose is achieved by a catalyst for exhaust gas purification, which is obtained by having a carrier that contains Al2O3 and one or more metal oxides selected from the group consisting of zirconium oxide (ZrO2), cerium oxide (CeO2), yttrium oxide (Y2O3), neodymium oxide (Nd2O3), silicon oxide (SiO2) and titanium oxide (TiO2) support one or more catalyst components selected from the group consisting of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). The metal oxides have particle diameters of less than 10 nm.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: February 7, 2017
    Assignees: UMICORE SHOKUBAI JAPAN CO., LTD., UMICORE SHOKUBAI USA INC.
    Inventors: Naohiro Kato, Yuta Akasaka, Yuji Ogino, Yosuke Goto
  • Patent number: 9539542
    Abstract: Provided is a catalyst for purifying an exhaust gas, the catalyst excelling in catalytic performance and oxygen storage capacity. The catalyst for purifying an exhaust gas is a catalyst for purifying an exhaust gas which includes a ceria-zirconia composite oxide having a pyrochlore structure and a ceria-zirconia composite oxide having a cubic crystal structure, wherein at least a part of the ceria-zirconia composite oxide is composited with the ceria-zirconia composite oxide.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: January 10, 2017
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Kosuke Mikita, Masanori Ikeda, Shinji Sugihara, Hideki Goto, Takahiro Ikegami
  • Patent number: 9433927
    Abstract: As a way to suppress deterioration of catalytic performance in an exhaust gas purification catalyst even after being exposed to an exhaust gas containing a phosphorus compound, an exhaust gas purification catalyst is provided. The catalyst purifies an exhaust gas containing a phosphorus compound, and the catalyst includes a catalyst layer containing rhodium (Rh), palladium (Pd), and either a ceria-zirconia-lanthana complex oxide or a ceria-zirconia-lanthana-yttria complex oxide as catalyst active components. Further, an average value of distances between Rh particles and the nearest Pd particles of the Rh and the Pd is within 4000 nm, a weight ratio of the Pd to the Rh is from 0.2 to 4.9, and a content rate of yttria in the ceria-zirconia-lanthana-yttria complex oxide is 19% by weight or less.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: September 6, 2016
    Assignee: UMICORE SHOKUBAI JAPAN CO., LTD.
    Inventors: Masanori Ikeda, Kazuyoshi Komata, Shigekazu Minami, Yuji Ogino, Hideki Goto