Patents Assigned to United Microelectronics Corp.
  • Publication number: 20240063282
    Abstract: A semiconductor device includes a substrate having an active area, a first gate line extending along a first direction on the active area, a first gate line extension adjacent to the first gate line and outside the active area, a second gate line extending along the first direction on the active area and adjacent to the first gate line, and a second gate line extension adjacent to the second gate line and outside the active area. Preferably, the active area includes a first indentation and a second indentation, in which the first gate line extension overlaps the first indentation and the second gate line extension overlaps the first indentation.
    Type: Application
    Filed: September 21, 2022
    Publication date: February 22, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Purakh Raj Verma, Su Xing, JINYU LIAO
  • Publication number: 20240063023
    Abstract: A patterning process is provided. The patterning process comprises the following steps. A material layer is formed on a substrate. An imprinting process is performed on the material layer using an imprint stamp to form a patterned material layer having a plurality of pattern portions. A hard mask layer is formed between adjacent pattern portions. An etching process is performed using the hard mask layer as an etching mask to remove the pattern portions and a part of the substrate. The hard mask layer is removed.
    Type: Application
    Filed: September 19, 2022
    Publication date: February 22, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Teng Yao Chang, Chih-Hsien Tang
  • Publication number: 20240057488
    Abstract: A RRAM (resistive random-access memory) device includes a bottom electrode line, a top electrode island and a resistive material. The bottom electrode line is directly on a first metal structure. The top electrode island is disposed beside the bottom electrode line. The resistive material is sandwiched by a sidewall of the bottom electrode line and a sidewall of the top electrode island. The present invention also provides a method of forming the RRAM device.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 15, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Ching Hsu, Wang Xiang, Shen-De Wang
  • Publication number: 20240057486
    Abstract: A semiconductor memory device includes a substrate having a first interlayer dielectric layer thereon; a lower metal interconnect layer in the first interlayer dielectric layer; a conductive via disposed on the lower metal interconnect layer; a bottom electrode disposed on the conductive via; a dielectric data storage layer having variable resistance disposed on the bottom electrode; a top electrode disposed on the dielectric data storage layer; and a protective layer covering sidewalls of the top electrode, the dielectric data storage layer, and the bottom electrode. The protective layer includes an annular, upwardly protruding portion around a perimeter of the top electrode.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: YUAN ZHOU, Xian Feng Du, GUOAN DU, GUOHAI ZHANG
  • Publication number: 20240057483
    Abstract: A magnetic memory device includes a bottom electrode layer, a magnetic tunneling junction (MTJ) stack disposed on the bottom electrode layer, a capping layer disposed on the MTJ stack, and a top electrode layer disposed on the capping layer. The top electrode layer comprises RuO2.
    Type: Application
    Filed: September 6, 2022
    Publication date: February 15, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Hui-Lin Wang
  • Publication number: 20240057487
    Abstract: An RRAM includes a bottom electrode, a resistive switching layer and a top electrode. The bottom electrode includes an inverted T-shaped profile. The resistive switching layer covers the bottom electrode. The top electrode covers the resistive switching layer. The inverted T-shaped profile includes a bottom element and a vertical element. The vertical element is disposed on the bottom element. The shape of the vertical element includes a rectangle or a trapezoid.
    Type: Application
    Filed: September 6, 2022
    Publication date: February 15, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kai-Jiun Chang, Chun-Hung Cheng, Chuan-Fu Wang
  • Publication number: 20240055515
    Abstract: A lateral diffused metal oxide semiconductor (LDMOS) device includes a first fin-shaped structure on a substrate, a second fin-shaped structure adjacent to the first fin-shaped structure, a shallow trench isolation (STI) between the first fin-shaped structure and the second fin-shaped structure, a first gate structure on the first fin-shaped structure, a second gate structure on the second fin-shaped structure, and an air gap between the first gate structure and the second gate structure.
    Type: Application
    Filed: October 24, 2023
    Publication date: February 15, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Zong-Han Lin
  • Patent number: 11901239
    Abstract: A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, an isolation structure on the SDB structure, a first spacer adjacent to the isolation structure, a metal gate adjacent to the isolation structure, a shallow trench isolation (STI around the fin-shaped structure, and a second isolation structure on the STI. Preferably, a top surface of the first spacer is lower than a top surface of the isolation structure and a bottom surface of the first spacer is lower than a bottom surface of the metal gate.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: February 13, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chun-Ya Chiu, Chi-Ting Wu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 11901318
    Abstract: An integrated circuit structure includes a substrate with a circuit region thereon and a copper interconnect structure disposed on the substrate. The copper interconnect structure includes an uppermost copper layer covered by a dielectric layer. An aluminum pad layer is provided on the dielectric layer. A metal layer is provided on the circuit region and is located between the uppermost copper layer and the aluminum pad layer.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: February 13, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Aaron Chen, Chi Ren, Yi Hsin Liu
  • Patent number: 11903325
    Abstract: A memory device includes a substrate; an active area extending along a first direction on the substrate; a gate line traversing the active area and extending along a second direction that is not parallel to the first direction; a source doped region in the active area and on a first side of the gate line; a main source line extending along the first direction; a source line extension coupled to the main source line and extending along the second direction; a drain doped region in the active area and on a second side of the gate line that is opposite to the first side; and a data storage element electrically coupled to the drain doped region. The main source line is electrically connected to the source doped region via the source line extension.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: February 13, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Ting Wu, Yan-Jou Chen, Cheng-Tung Huang, Jen-Yu Wang, Po-Chun Yang, Yung-Ching Hsieh, Jian-Jhong Chen, Bo-Chang Li
  • Publication number: 20240049608
    Abstract: A semiconductor device includes a substrate, a first MTJ structure, a second MTJ structure, an interconnection structure including a first metal interconnection and a second metal interconnection disposed on and contacting the first metal interconnection, a fifth metal interconnection, and a sixth metal interconnection. The first MTJ structure, the second MTJ structure, and the interconnection structure are disposed on the substrate. The interconnection structure is located between the first MTJ structure and the second MTJ structure in a first horizontal direction. The fifth metal interconnection and the sixth metal interconnection are disposed under and contact the first MTJ structure and the second MTJ structure, respectively. The fifth metal interconnection includes a barrier layer and a metal layer disposed on the barrier layer. A length of the first MTJ structure in the first horizontal direction is greater than a length of the metal layer in the first horizontal direction.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Kuo, Chia-Chang Hsu
  • Publication number: 20240047266
    Abstract: A method of forming a protective layer utilized in a silicon remove process includes bonding a first wafer to a second wafer, wherein the first wafer comprises a first silicon substrate with a first device structure disposed thereon and the second wafer comprises a second silicon substrate with a second device structure disposed thereon. After that, a first trim process is performed to thin laterally an edge of the first wafer and an edge of the second device structure. After the first trim process, a protective layer is formed to cover a back side of the second silicon substrate. After forming the protective layer, a silicon remove process is performed to remove only the first silicon substrate.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 8, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Liang Liao, Chee Hau Ng, Ching-Yang Wen, Purakh Raj Verma
  • Publication number: 20240047497
    Abstract: An image sensor includes a semiconductor substrate having a first surface and a second surface opposite to the first surface in a vertical direction, a first isolation structure disposed in the semiconductor substrate for defining pixel regions, a visible light detection structure, an infrared light detection structure, and a reflective layer. The visible light detection structure and the infrared light detection structure are disposed within the same pixel region. The visible light detection structure includes a first portion disposed between the second surface and the infrared light detection structure in the vertical direction and a second portion disposed between the infrared light detection structure and the first isolation structure in a horizontal direction. The infrared light detection structure is disposed between the reflective layer and the first portion in the vertical direction. The second portion is not sandwiched between the reflective layer and the second surface in the vertical direction.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 8, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Cheng-Yu Hsieh
  • Publication number: 20240047554
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A III-V compound barrier layer is formed on a III-V compound semiconductor layer. A protection layer is formed on the III-V compound barrier layer. An opening is formed penetrating through the protection layer in a vertical direction and exposing a part of the III-V compound barrier layer. A p-type doped III-V compound material is formed in the opening. A patterned barrier layer is formed on the p-type doped III-V compound material. A contact area between the patterned barrier layer and the p-type doped III-V compound material is less than an area of a top surface of the p-type doped III-V compound material.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 8, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Zhi-Cheng Lee, Huai-Tzu Chiang, Chuang-Han Hsieh, Kai-Lin Lee
  • Patent number: 11895927
    Abstract: A semiconductor memory device includes a substrate having a conductor region thereon, an interlayer dielectric layer on the substrate, and a conductive via electrically connected to the conductor region. The conductive via has a lower portion embedded in the interlayer dielectric layer and an upper portion protruding from a top surface of the interlayer dielectric layer. The upper portion has a rounded top surface. A storage structure conformally covers the rounded top surface.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Chang Hsu, Tang-Chun Weng, Cheng-Yi Lin, Yung-Shen Chen, Chia-Hung Lin
  • Patent number: 11895847
    Abstract: A semiconductor device includes a substrate having a magnetic tunneling junction (MTJ) region and a logic region, a magnetic tunneling junction (MTJ) on the MTJ region and a first metal interconnection on the MTJ. Preferably, a top view of the MTJ includes a circle and a top view of the first metal interconnection includes an ellipse overlapping the circle.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ting-Hsiang Huang, Yi-Chung Sheng, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
  • Patent number: 11894441
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a first hard mask on the first barrier layer; removing the first hard mask and the first barrier layer to form a recess; forming a second barrier layer in the recess; and forming a p-type semiconductor layer on the second barrier layer.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ming Chang, Che-Hung Huang, Wen-Jung Liao, Chun-Liang Hou
  • Patent number: 11895848
    Abstract: A layout pattern for magnetoresistive random access memory (MRAM) includes a substrate having a first active region, a second active region, and a word line connecting region between the first active region and the second active region, a first gate pattern extending along a first direction from the first active region to the second active region, a second gate pattern extending along the first direction from the first active region to the second active region, a first magnetic tunneling junction (MTJ) between the first gate pattern and the second pattern and within the word line connecting region, and a second MTJ between the first gate pattern and the second gate pattern in the first active region. Preferably, top surfaces of the first MTJ and the second MTJ are coplanar.
    Type: Grant
    Filed: May 22, 2022
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ya-Huei Tsai, Rai-Min Huang, Yu-Ping Wang, Hung-Yueh Chen
  • Patent number: 11894453
    Abstract: A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a barrier layer on the buffer layer; forming a gate dielectric layer on the barrier layer; forming a work function metal layer on the gate dielectric layer; patterning the work function metal layer and the gate dielectric layer; forming a gate electrode on the work function metal layer; and forming a source electrode and a drain electrode adjacent to two sides of the gate electrode.
    Type: Grant
    Filed: August 28, 2022
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Patent number: 11895926
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a first inter-metal dielectric (IMD) layer on a substrate and a metal interconnection in the first IMD layer, forming a magnetic tunneling junction (MTJ) and a top electrode on the metal interconnection, forming a spacer adjacent to the MTJ and the top electrode, forming a second IMD layer around the spacer, forming a cap layer on the top electrode, the spacer, and the second IMD layer, and then patterning the cap layer to form a protective cap on the top electrode and the spacer.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Ju-Chun Fan, Ching-Hua Hsu, Yi-Yu Lin, Hung-Yueh Chen