Patents Assigned to United States of America as represented by the Secretary of Commerce
  • Patent number: 8435415
    Abstract: A nanofabrication process for use with a photoresist that is disposed on a substrate includes the steps of exposing the photoresist to a grayscale radiation pattern, developing the photoresist to remove a irradiated portions and form a patterned topography having a plurality of nanoscale critical dimensions, and selectively etching the photoresist and the substrate to transfer a corresponding topography having a plurality of nanoscale critical dimensions into the substrate.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 7, 2013
    Assignees: The United States of America, as represented by the Secretary of Commerce, the National Institute of Standards and Technology, Cornell University—Cornell Center for Technology, Enterprise & Commercialization
    Inventors: Samuel Martin Stavis, Elizabeth Arlene Strychalski, Michael Gaitan
  • Patent number: 8398922
    Abstract: An oxygen sensor comprising an oxygen sensing compound and configured to substantially mitigate leaching of the oxygen sensing compound from the oxygen sensor to an outer surface thereof is provided. The oxygen sensor may comprise one or more layers. A first portion of the oxygen sensor is configured to be permeable to gas and comprises an oxygen sensing material. A second portion is disposed with or on the first portion and is configured to be permeable to gas and substantially impermeable to the oxygen sensing material.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 19, 2013
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Samuel P. Forry, Peter C. Thomas
  • Patent number: 8387158
    Abstract: The present invention relates to a method of rapidly and repeatably bringing sharp objects into close proximity to a particular region of interest of a sample with high precision and accuracy in two or three dimensions using a laser guided tip approach with three dimensional registration to the surface.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: February 26, 2013
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Thomas T Perkins, Gavin M King, Ashley R Carter
  • Patent number: 8350556
    Abstract: An integrated optical element and Faraday cup that can measure charged particle beam currents, manipulate light and analyze charged particle beam energy distribution. One boundary of the cup is formed by a lens or other suitable optical element which can be used for manipulating light along the axis of the Faraday cup. The surface of the optical element interior to the cup is coated with a transparent conductor in order to establish the simultaneous functions of taking charged particle beam current measurements, taking energy distribution measurements and manipulating light for such applications as focusing or imaging. A suppressor/blanker/retarder electrode is designed to eliminate spurious current signals that can result from production of secondary electrons by the charged particle beam impinging on the electrode surface.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 8, 2013
    Assignee: The United States of America as represented by the Secretary of Commerce, NIST
    Inventors: Brenton J. Knuffman, Adam V. Steele, Jabez J. McClelland
  • Patent number: 8337783
    Abstract: A magnetic connector assembly for microfluidic devices comprises a first magnetic connector with at least one orifice extending therethrough and a second magnetic connector. The first and second connectors are configured to magnetically attract each other. In one aspect, the first magnetic connector is configured to sealingly engage a surface of a microfluidic chip with the second magnetic connector disposed on an opposite side of the microfluidic chip. The first magnetic connector is configured to seal with the microfluidic chip about a channel opening in the microfluidic chip and provide flow communication between the channel opening and the orifice in the first magnetic connector. In at least one other aspect, the first magnetic connector and second magnetic connector each have at least one orifice and are configured to change a flow communication therebetween upon a rotation of the first or second magnetic connector with respect to the other magnetic connector.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 25, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Patent number: 8334690
    Abstract: A magnetometer and method of use is presently disclosed. The magnetometer has at least one sensor void of extraneous metallic components, electrical contacts and electrically conducting pathways. The sensor contains an active material vapor, such as an alkali vapor, that alters at least one measurable parameter of light passing therethrough, when in a magnetic field. The sensor may have an absorptive material configured to absorb laser light and thereby activate or heat the active material vapor.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 18, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: John Kitching, Svenja Knappe, Jan Preusser, Vladislav Gerginov
  • Patent number: 8324703
    Abstract: An in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles is provided. The utility of the approach is demonstrated by development of a gas sensing device employing the nanowire assembly. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550° C. on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: December 4, 2012
    Assignees: University of Maryland, The United States of America as represented by the Secretary of Commerce
    Inventors: Prahalad Parthangal, Michael R. Zachariah, Richard E. Cavicchi
  • Patent number: 8314404
    Abstract: An ion beam system uses a separate accelerating electrode, such as a resistive tube, to accelerate the ions while maintaining a low electric field at an extended, that is, distributed ion source, thereby improving resolution. A magneto-optical trap can be used as the ion source.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: November 20, 2012
    Assignees: FEI Company, The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Jabez McClelland, Brenton J. Knuffman, Adam V. Steele, Jonathan H. Orloff
  • Patent number: 8316338
    Abstract: A method of simplifying a combinational circuit establishes an initial combinational circuit operable to calculate a set of target signals. A quantity of multiplication operations performed in a first portion of the initial combinational circuit is reduced to create a first, simplified combinational circuit. The first portion includes only multiplication operations and addition operations. A quantity of addition operations performed in a second portion of the first, simplified combinational circuit is reduced to create a second, simplified combinational circuit. The second portion includes only addition operations. Also, the second, simplified combinational circuit is operable to calculate the target signals using fewer operations than the initial combinational circuit.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: November 20, 2012
    Assignees: The United States of America, as Represented by the Secretary of Commerce, The National Institute of Standards & Technology, University of Southern Denmark
    Inventors: Rene Caupolican Peralta, Joan Boyar
  • Patent number: 8294007
    Abstract: A membrane is disclosed made from a compound having a hydrophilic head group, an aliphatic tail group, and a polymerizable functional group. The membrane spans an aperture and may be polymerized. The membrane may be useful for DNA sequencing when the membrane includes an ion channel.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: October 23, 2012
    Assignees: The United States of America, as represented by the Secretary of the Navy, The United States of America, as represented by the Secretary of Commerce
    Inventors: Devanand K. Shenoy, Alok Singh, William R. Barger, John J. Kasianowicz
  • Patent number: 8217081
    Abstract: A polymerizable biomedical composition includes a quaternary ammonium group bonded at its quaternary sites to respective groups R1, R2, R3, and R4. R1 and R2 each include a vinyl moiety such that the composition is at least bi-functional with respect to polymerization.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: July 10, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventor: Joseph M. Antonucci
  • Patent number: 8216526
    Abstract: A microfluidic device is described, capable of generating multiple spatial chemical gradients simultaneously inside a microfluidic chamber. The chemical gradients are generated by diffusion, without convection, and can either be maintained constant over long time periods, or modified dynamically. A representative device is described with a circular chamber in which diffusion occurs, with three access ports for the delivery and removal of solutes. A gradient typically forms in minutes, and can be maintained constant indefinitely. Gradients overlapping with different spatial location, and a controlled rotation of a gradient formed by diffusion are demonstrated. The device can also be used to evaluate chemotactic responses of bacteria or other microorganisms in the absence of convective flow.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: July 10, 2012
    Assignee: The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Patent number: 8195395
    Abstract: A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy over a limited sampling period.
    Type: Grant
    Filed: September 6, 2009
    Date of Patent: June 5, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Chung-Chu Teng, Rodney Riley, Richard Bouchard
  • Patent number: 8120772
    Abstract: Methods and systems are described for suppressing nonresonant background in broadband coherent anti-Stokes Raman scattering (CARS) microscopy and spectroscopy. The methods and systems improve sensitivity and signal to noise ratio in CARS.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: February 21, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology
    Inventors: Marcus T. Cicerone, Young Jong Lee
  • Patent number: 8101942
    Abstract: The present invention is a two-state switching device based on two electrodes separated by a self-assembled monolayer. At least one of the electrodes may be composed of silver and the other electrode of any electrically conductive material, such as metals, especially gold or platinum. In the high-resistance OFF state, the two electrodes are separated by an organic monolayer having sufficiently low electrical conducting as to be considered non-conductive. Application of a negative threshold bias causes a silver ion filament to grown within the monolayer and bridge the gap between the two electrodes, changing the device into a low-resistance ON state. The device may be turned OFF by application of a positive threshold bias, which causes the ionic filament to retract back into the silver electrode.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: January 24, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Jeremy M. Beebe, James G. Kushmer
  • Patent number: 8080144
    Abstract: A method for performing electrophoretic separation of ionic compounds which involves varying a bulk fluid flow though a separation path into which ionic species are continuously introduced and separated. The method can also include the introduction of a leading electrolyte into the separation path to form an ionic interface with the sample and an optional terminating electrolyte to enrich ionic species for higher detection resolution.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: December 20, 2011
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: David J. Ross, Jonathan G. Shackman
  • Patent number: 8048236
    Abstract: A Gd5Ge2Si2 refrigerant compound is doped or alloyed with an effective amount of silicide-forming metal element such that the magnetic hysteresis losses in the doped Gd5Ge2Si2 compound are substantially reduced in comparison to the hysteresis losses of the undoped Gd5Ge2Si2 compound. The hysteresis losses can be nearly eliminated by doping the Gd5Ge2Si2 compound with iron, cobalt, manganese, copper, or gallium. The effective refrigeration capacities of the doped Gd5Ge2Si2 compound are significantly higher than for the undoped Gd5Ge2Si2 compound.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: November 1, 2011
    Assignee: The United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology
    Inventors: Robert D. Shull, Alexander J. Shapiro, Virgil Provenzano
  • Patent number: 8022864
    Abstract: Signal processing is used to detect transient signals in the presence of noise. Two embodiments are disclosed. In both embodiments, the time series from a remote sensor is broken into a number of short time series. The power spectrum of each short time series are then calculated along with the mean noise level. The moments of each peak in every power spectrum are calculated and the peak with the largest power selected from each power spectrum. A histogram of the moments from these selected peaks is generated and normalized to become a measured PDF. In addition, a pre-determined PDF is derived, in the same method as above, from theoretically calculated noise, numerically simulated noise, or measured noise. Comparison between the measured and pre-determined PDF's establish the detection of a transient signal. The first embodiment compares the area between the measured and pre-determined PDF's against a threshold to determine detection.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: James Ronald Jordan, James Harwood Churnside, Paul Ernest Johnston
  • Patent number: 8007742
    Abstract: A digester-evaporator for partially digesting a sample and for evaporating the solvent after partial digestion. The digester includes at least one reaction coil; a heating element arranged along a portion of the reaction coil; at least a portion of the reaction coil proximate to its output being preheated by the heating element to a degree sufficient to convert a partially digested sample into vapor; a collector spoon with carrier water for collecting sample vapor; and an evaporator portion including an evaporation chamber including a substantially vertically-oriented tube The collector spoon is arranged in the top of the substantially vertically-oriented tube, and a gas supply tube for supplying a preheated gas provided in a top of the substantially vertically-oriented tube so as to create a cyclonic gas flow into the chamber and carry the sample to a container area in a bottom portion of the chamber.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: August 30, 2011
    Assignee: United States of America as represented by the Secretary of Commerce
    Inventors: Stephen E. Long, David M. Bunk, Mariana Arce-Osuna
  • Patent number: 7985599
    Abstract: Arrays of spin-valve elements that can be selectively activated to trap, hold, manipulate and release magnetically tagged biological and chemical particles, including molecules and polymers. The spin-valve elements that can be selectively activated and deactivated by applying a momentary applied magnetic field thereto. The spin valve element array can be used for selectively sorting and transporting magnetic particles one particle at a time within the array. As the magnetically tagged particles are held by the spin-valve elements, application of an auxiliary magnetic field can be used to apply tension or torsion to the held particles or to move, e.g. rotate, the trapped particles. The arrays of spin-valve elements can be used in a variety of applications including drug screening, nucleic acid sequencing, structural control and analysis of RNA/DNA and proteins, medical diagnosis, and magnetic particle susceptibility and size homogenization for other medical applications.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: July 26, 2011
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: John Moreland, Elizabeth Mirowski, Stephen E. Russek