Patents Assigned to Univation Technologies, LLC
  • Patent number: 10682797
    Abstract: Methods for extrusion of polyolefins (112) that control specific energy input to the extruder (102) for gel reduction. Disclosed herein is an example method for forming plastic products (120, 208) with reduced gels, comprising: melting a polyolefin resin (112) in extruder (102) to form a melt; adjusting specific energy input in the extruder (102) to reduce gels in the melt; and forming the melt into a polyolefin product (120, 208). Disclosed herein is also an example method for forming plastic products (120, 20) with reduced gels, comprising: melting a polyolefin resin in extruder (102) to form a melt; selecting a throttle valve (104) position for gel reduction; setting the throttle valve (104) at the selected throttle valve (104) position to restrict flow of the melt out of the extruder (102); and forming the melt into a polyolefin product (120, 208).
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: June 16, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Daudi A. Abe, Brandon C. Locklear, Yuet Meng Chu, T. R. Veariel
  • Patent number: 10676588
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 9, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Patent number: 10676589
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 9, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Patent number: 10654029
    Abstract: Disclosed are novel bridged bi-aromatic phenol ligands and transition metal catalyst compounds derived therefrom. Also disclosed are methods of making the ligands and transition metal compounds, and polymerization processes utilizing the transition metal compounds for the production of olefin polymers.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 19, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Catherine Anne Faler, C. Jeff Harlan
  • Publication number: 20200140581
    Abstract: The present disclosure provides a method of maintaining a target value of a melt flow index of a polyethylene polymer product being synthesized with a metallocene catalyst in a fluidized bed gas phase reactor. The method includes producing the polyethylene polymer product at the target value of the melt flow index with a metallocene catalyst in a fluidized bed gas phase reactor at a steady state in which the fluidized bed gas phase reactor is at a first reactor temperature and receives feeds of hydrogen and ethylene at a hydrogen to ethylene feed ratio at a first ratio value. When a change in reactor temperature is detected, the hydrogen to ethylene feed ratio is changed from the first ratio value to a second ratio value so as to maintain the melt flow index value of the polyethylene polymer product at the target value.
    Type: Application
    Filed: June 6, 2018
    Publication date: May 7, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno, Brandon C. Locklear, Jim Farley
  • Patent number: 10626134
    Abstract: Catalyst systems and methods for making and using the same are disclosed. In an example, a method of synthesizing a monocyclopentadienyl compound is provided. The method includes melting a dicyclopentadienyl compound including the following structure: As used herein, M is hafnium or zirconium. Each R is independently an H, a hydrocarbyl group, a substituted hydrocarbyl group, a heteroatom group. Each X is a leaving group selected from a halogen or a heteroatom group.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 21, 2020
    Assignee: Univation Technologies, LLC
    Inventor: C. Jeff Harlan
  • Patent number: 10604606
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 31, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 10604605
    Abstract: Catalyst systems and methods for making and using the same are described herein. A catalyst system can include at least three catalysts. The three catalysts include a metallocene catalyst, a first non-metallocene including a ligand complexed to a metal through two or more nitrogen atoms, and a second non-metallocene including a ligand complexed to a metal through one or more nitrogen atoms and an oxygen atom.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 31, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Juliet Bauer Wagner, Garth R. Giesbrecht, Sun-Chueh Kao, Stephen P. Jaker
  • Patent number: 10597509
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 24, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Publication number: 20200079882
    Abstract: Embodiments of the present disclosure are directed towards methods for rating polymerization processes based upon a first cracking index (value and a second cracking index value.
    Type: Application
    Filed: December 6, 2017
    Publication date: March 12, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Ping Cai, Francois Alexandre, Mark G. Goode
  • Publication number: 20200079886
    Abstract: The present disclosure provides for a system and method for producing a polyethylene polymer (PE) that includes measuring a melt flow index (MFI) of the PE, comparing the measured value of the MFI to a predetermined desired range for the MFI, changing a catalyst feed rate to the polymerization reactor based on the compared values of the MFI, where changes in the catalyst feed rate preemptively compensate for subsequent changes in an oxygen flow rate to the polymerization reactor that maintain a predetermined residence time and bring the MFI of the PE into the predetermined desired range for the MFI; and changing the oxygen flow rate to the polymerization reactor thereby maintaining both the predetermined residence time and bringing the MFI of the PE into the predetermined desired range for the MFI. The measuring and comparing steps are repeated to ensure the measured value of the MFI is within the predetermined desired range of the MFI at the predetermined residence time.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 12, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Samuel Bernal, Mark G. Goode, Francois Alexandre, William A. Matthews
  • Publication number: 20200071509
    Abstract: Provided are various bimodal polyethylene, including but not limited to a bimodal polyethylene for a pipe having a density of from 0.9340 to 0.9470 gram/cubic centimeters (g/ccm), a melt index (12) of from 0.1 to 0.7 gram/10 minute, a melt flow ratio (121/12) of from 20 to 90. The bimodal polyethylene includes a high molecular weight polyethylene component and a low molecular weight polyethylene component which are a reaction product of a polymerization process performed in a single reactor and that employs a bimodal polymerization catalyst system. The bimodal polymerization catalyst system includes a bimodal catalyst system of bis(2-pentamethylphenylamido)ethyl)amine Zirconium dibenzyl and either (tetramethylcyclopentadienyl)(n-propylcyclopentadienyl)Zirconium dichloride or (tetramethylcyclopentadienyl)(n-propylcyclopentadienyl)zirconium dimethyl in a 3.
    Type: Application
    Filed: October 25, 2017
    Publication date: March 5, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Nitin BORSE, Swapnil CHANDAK, Ayush A. BAFNA, Cliff R. MURE, Yi ZHANG, Timothy R. LYNN, Roger L. KUHLMAN, John F. SZUL
  • Publication number: 20200048379
    Abstract: Novel polyethylene copolymers having a relatively high comonomer partitioning tendency are disclosed as are methods for their preparation. The comonomer partitioning tendency is the tendency for a copolymer to have comonomer in the higher molecular weight chains. Novel metrics for describing the comonomer partitioning tendency are also disclosed.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Applicant: Univation Technologies, LLC
    Inventor: Roger L. Kuhlman
  • Publication number: 20200048384
    Abstract: A high density, high polydispersity polyethylene having improved properties, and a process of producing same.
    Type: Application
    Filed: January 12, 2018
    Publication date: February 13, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Peter S. Martin, John F. Szul, Roger L. Kuhlman, Mahsa McDougal, C. Jeff Harlan, Timothy M. Boller
  • Publication number: 20200031958
    Abstract: Embodiments of the present disclosure directed towards polymerization catalysts having improved ethylene enchainment. As an example, the present disclosure provides a polymerization catalyst having improved ethylene enchainment, the polymerization catalyst comprising a zirconocene catalyst of Formula (I) where R1 is a C1 to C20 alkyl, aryl or aralkyl group, wherein R2 is an C1 to C20 alkyl, aryl or aralkyl group, and where R3 is a C1 to C20 alkyl or a hydrogen, and where each X is independently a halide, C1 to C20 alkyl, aralkyl group or hydrogen.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 30, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Roger L. KUHLMAN, Mahsa McDOUGAL, Timothy M. BOLLER, C. Jeff HARLAN, Timothy R. LYNN, Cliff R. MURE, John F. SZUL, Daniel P. ZILKER, JR.
  • Publication number: 20200024376
    Abstract: Embodiments of the present disclosure directed towards bimodal polymerization catalysts. As an example, the present disclosure provides a bimodal polymerization catalyst system including a non-metallocene olefin polymerization catalyst and a zirconocene catalyst of Formula I: (Formula I) where each of R1, R2, and R4 are independently a C1 to C20 alkyl, aryl or aralkyl group or a hydrogen, where R3 is a C1 to C20 alkyl, aryl or aralkyl group, and where each X is independently a halide, C1 to C20 alkyl, aralkyl group or hydrogen.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 23, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Cliff R. MURE, Timothy R. LYNN
  • Patent number: 10538604
    Abstract: Catalyst systems and methods for making and using the same are disclosed. A catalyst composition is provided that includes a catalyst compound supported to form a supported catalyst system, the catalyst compound including: where each of R1, R2, R3, R4, R5, R6, R7 and X are as discussed herein.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 21, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Donna J. Crowther, C. Jeff Harlan, Jackie Lovell, Haiqing Peng
  • Publication number: 20200010590
    Abstract: A system and method for charging a chromium-based catalyst to a mix vessel; introducing a reducing agent through an entrance arrangement into the mix vessel, and agitating a mixture of the chromium-based catalyst, the reducing agent, and a solvent in the mix vessel to promote contact of the reducing agent with the chromium-based catalyst to give a reduced chromium-based catalyst.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 9, 2020
    Applicant: Univation Technologies, LLC
    Inventors: John H. Moorhouse, Kevin J. Cann, Mark G. Goode, Kevin R. Gross
  • Patent number: 10519256
    Abstract: Supported catalyst compositions, useful in olefin polymerization, and having improved flow properties are disclosed. The catalyst compositions may be characterized by low macro pore volume and high bulk density. Methods for preparing the catalyst compositions are also disclosed.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: December 31, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Richard B. Pannell, Chi-I Kuo, Shamah Lloyd
  • Patent number: 10519095
    Abstract: Synthetic methods for the preparation of ligands and metal-ligand complexes are disclosed.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: December 31, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Catherine A. Faler, C. Jeff Harlan