Patents Assigned to Univation Technologies, LLC
  • Publication number: 20190330391
    Abstract: A method including a) polymerizing at least one monomer in a gas phase reactor in the presence of a supported multimodal catalyst system to form a multimodal polyethylene product having a reactor split equal to respective weight fractions of resin components in the polyethylene product; b) applying a predetermined formula for a product parameter of the multimodal polyethylene product; c) obtaining incorporation data and production rate data from the reaction based upon the predetermined formula; d) determining an actual hydrogen leading indicator; e) comparing the actual hydrogen leading indicator to a target value for a hydrogen leading indicator to determine a deviation of the actual hydrogen leading indicator from the target value; and f) adjusting an amount of a catalyst precursor being fed to the gas phase reactor to control reactor split and a product parameter.
    Type: Application
    Filed: October 25, 2017
    Publication date: October 31, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Timothy R. Lynn, Daniel N. Thomas, Jr., Bruce J. Savatsky, John F. Szul
  • Publication number: 20190322780
    Abstract: Catalyst systems and methods for making and using the same. A method of polymerizing olefins to produce a polyolefin polymer with a multimodal composition distribution, includes contacting ethylene and a comonomer with a catalyst system. The catalyst system includes a first catalyst compound and a second catalyst compound that are co-supported to form a commonly supported catalyst system. The first catalyst compound includes a compound with the general formula (C5HaR1b)(C5HcR2d)HfX2. The second catalyst compound includes at least one of the following general formulas: In both catalyst systems, the R groups can be independently selected from any number of substituents, including, for example, H, a hydrocarbyl group, a substituted hydrocarbyl group, or a heteroatom group, among others.
    Type: Application
    Filed: June 5, 2019
    Publication date: October 24, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, C. Jeff Harlan, Laughlin G. McCullough
  • Patent number: 10421829
    Abstract: Catalyst systems and methods for making and using the same. A method of methylating a catalyst composition while substantially normalizing the entiomeric distribution is provided. The method includes slurrying the organometallic compound in dimethoxyethane (DME), and adding a solution of RMgBr in DME, wherein R is a methyl group or a benzyl group, and wherein the RMgBr is greater than about 2.3 equivalents relative to the organometallic compound. After the addition of the RMgBr, the slurry is mixed for at least about four hours. An alkylated organometallic is isolated, wherein the methylated species has a meso/rac ratio that is between about 0.9 and about 1.2.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: September 24, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Alexander D. Todd, C. Jeff Harlan
  • Patent number: 10414843
    Abstract: Methods of preparing supported catalyst compositions using spray drying are disclosed. The supported catalyst compositions find use in the polymerization of olefins.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: September 17, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Richard B. Pannell, Michael D. Awe
  • Patent number: 10400049
    Abstract: Methods for olefin polymerization are described. The methods include a) forming a first polyolefin under a first set of polymerization conditions in the presence of a first catalyst composition and a first concentration of at least a first continuity additive composition, the first polyolefin composition having a target density, 1, and a target Flow Index, FI1; and b) forming a second polyolefin composition under a second set of polymerization conditions in the presence of a second catalyst composition and a second concentration of a second continuity additive composition, the second polyolefin composition having a target density, 2, and a target Flow Index, FI2; wherein the process is essentially free of providing a polymerization neutralizing composition between steps a) and b).
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: September 3, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, R. Eric Pequeno, Brandon C. Locklear
  • Patent number: 10399052
    Abstract: The use of induced condensing agent (ICA) in fluidized bed gas phase reactor systems enables higher production rates but can affect the resulting polyolefins melt index. The effect the increased ICA concentration may have on a melt index may be counteracted, if necessary, by altering the concentration of olefin monomer within the reactor system.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: September 3, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Natarajan Muruganandam, Timothy R. Lynn, James M. Farley, Daniel P. Zilker, Jr., Fathi David Hussein
  • Publication number: 20190263951
    Abstract: Methods for producing polyolefin polymers may use a predictive melt index regression to estimate the melt index of the polyolefin during production based on the composition of the gas phase and, optionally, the concentration of catalyst in the reactor or reactor operating conditions. Such predictive melt index regression may include multiple terms to account for concentration of ICA in the reactor, optionally concentration of hydrogen in the reactor, optionally concentration of comonomer in the reactor, optionally the catalyst composition, and optionally reactor operating conditions. One or more terms may independently be represented by a smoothing function that incorporates a time constant.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Daniel N. Thomas, JR., Timothy R. Lynn
  • Publication number: 20190263944
    Abstract: Embodiments of the present disclosure directed towards polymerization catalysts having improved ethylene enchainment and/or improved catalyst productivity.
    Type: Application
    Filed: September 26, 2017
    Publication date: August 29, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Roger L. Kuhlman, Mahsa McDougal, Rachel E. Brooner, Matthew M. Yonkey
  • Patent number: 10392456
    Abstract: Catalyst systems and methods for making and using the same. A method of methylating a catalyst composition while substantially normalizing the entiomeric distribution is provided. The method includes slurrying the organometallic compound in dimethoxyethane (DME), and adding a solution of RMgBr in DME, wherein R is a methyl group or a benzyl group, and wherein the RMgBr is greater than about 2.3 equivalents relative to the organometallic compound. After the addition of the RMgBr, the slurry is mixed for at least about four hours. An alkylated organometallic is isolated, wherein the methylated species has a meso/rac ratio that is between about 0.9 and about 1.2.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 27, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Alexander D. Todd, C. Jeff Harlan
  • Publication number: 20190248937
    Abstract: Catalyst activators and methods for their preparation and their use in processes for polymerizing olefins are described. In particular, catalyst activators derived from aluminum alkyls and their use with metallocene type catalyst systems and/or conventional-type transition metal catalyst systems are described.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 15, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Ian M. Munro, Kevin J. Cann
  • Publication number: 20190218364
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 18, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Publication number: 20190211181
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Publication number: 20190211180
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Yuanqiao Rao, Ping Cai, Kevin J. Cann, F. David Hussein, Wesley R. Mariott, Phuong A. Cao
  • Publication number: 20190194238
    Abstract: Catalyst systems and methods for making and using the same are disclosed. In an example, a method of synthesizing a monocyclopentadienyl compound is provided. The method includes melting a dicyclopentadienyl compound including the following structure: As used herein, M is hafnium or zirconium. Each R is independently an H, a hydrocarbyl group, a substituted hydrocarbyl group, a heteroatom group. Each X is a leaving group selected from a halogen or a heteroatom group.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Applicant: Univation Technologies, LLC
    Inventor: C. Jeff Harlan
  • Patent number: 10329365
    Abstract: Methods for producing polyolefin polymers may use a predictive melt index regression to estimate the melt index of the polyolefin during production based on the composition of the gas phase and, optionally, the concentration of catalyst in the reactor or reactor operating conditions. Such predictive melt index regression may include multiple terms to account for concentration of ICA in the reactor, optionally concentration of hydrogen in the reactor, optionally concentration of comonomer in the reactor, optionally the catalyst composition, and optionally reactor operating conditions. One or more terms may independently be represented by a smoothing function that incorporates a time constant.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 25, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Bruce J. Savatsky, Daniel N. Thomas, Jr., Timothy R. Lynn
  • Patent number: 10329364
    Abstract: Polymerization catalyst compositions are provided as are methods of their preparation. The compositions comprise fatty amines and find advantageous use in olefin polymerization processes. The catalyst composition comprises at least one supported polymerization catalyst wherein the catalyst composition is modified with at least one fatty amine wherein the fatty amine is substantially free of particulate inorganic material.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: June 25, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Richard B. Pannell, David M. Glowczwski, Chi-I Kuo, Timothy R. Lynn, Fathi David Hussein, Phuong A. Cao, Wesley R. Mariott, Michael D. Awe
  • Publication number: 20190177452
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 13, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, JR., C. Jeff Harlan, James M. Farley, Fathi David Hussein, Dongming Li, Steven A. Best
  • Publication number: 20190169333
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 10308742
    Abstract: Polymers, and systems and methods for making and using the same are described herein. A polymer includes ethylene and at least one alpha olefin having from 4 to 20 carbon atoms. The polymer is formed by a trimmed catalyst system including a supported catalyst including bis(n-propylcyclopentadienyl) hafnium (R1)(R2) and a trim catalyst comprising meso-O(SiMe2Ind)2Zr(R1)(R2), wherein R1 and R2 are each, independently, methyl, chloro, fluoro, or a hydrocarbyl group.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: June 4, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Francis C. Rix, Timothy M. Boller, Garth R. Giesbrecht, Mark G. Goode, Sun-Chueh Kao, Dongming Li, R. Eric Pequeno, Daniel P. Zilker, Jr.
  • Publication number: 20190161568
    Abstract: Disclosed herein are methods of controlling polymer properties in polymerization processes that use a chromium-based catalyst. An embodiment discloses a method of producing a polyolefin comprising: contacting a reaction mixture and a reduced chromium oxide catalyst in a gas-phase reactor to produce the polyolefin, wherein the reaction mixture comprises a monomer and a co-monomer; and changing a reaction temperature in the gas-phase reactor by about 1° C. or more whereby a gas molar ratio of the co-monomer to the monomer is changed by about 2% or more and a co-monomer content of the polyolefin at substantially constant density is changed by about 2% or more. Additional methods and compositions are also provided.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 30, 2019
    Applicant: Univation Technologies, LLC
    Inventors: Mark G. Goode, Francois Alexandre, Kevin J. Cann, Barbara J. Kopp, William A. Matthews, John H. Moorhouse, Cliff R. Mure