Abstract: Provided is a method for making a polyolefin comprising contacting one or more olefins in a reactor containing a catalyst; polymerizing the one or more olefins to produce an olefin polymer characterized by a first melt flow ratio (MFR) and a first haze; and altering the reaction temperature in the reactor to shift the first MFR to a MFR that is different than the first MFR and to shift the first haze to a haze that is different than the first haze.
Type:
Grant
Filed:
November 16, 2010
Date of Patent:
January 28, 2014
Assignee:
Univation Technologies, LLC
Inventors:
Dongming Li, Ching-Tai Lue, Chi-I Kuo, Mark G. Goode, Stefan B. Ohlsson
Abstract: A polymer finishing process including: recovering polymer powder from a polymerization reactor; feeding the polymer powder to an inlet of a mass flow screw conveyor and one or more mass measuring devices for determining a mass of polymer powder within at least a portion of the mass flow screw conveyor; measuring at least one of a mass of the polymer powder in the screw conveyor and a combined mass of the screw conveyor and the polymer powder within the screw conveyor with the one or more mass measuring devices; and determining a mass flowrate of polymer powder through the mass flow screw conveyor based on the at least one of the measured mass of the polymer powder in the mass flow screw conveyor and the measured combined mass. A method of controlling a polymerization process using a mass flow screw conveyor is also disclosed.
Abstract: A catalyst composition that includes a support material having an improved particle-size distribution is provided. Processes for producing polyolefin composition also are provided. Polymers and films also are provided. An example of a catalyst composition is a supported multi-transition-metal catalyst composition that includes: (a) at least two catalyst components selected from the group consisting of: a nonmetallocene catalyst component and a metallocene catalyst component; (b) a support material that has a D50 of less than about 30 microns and a particle size distribution having a D90/D10 ratio of less than about 6; and (c) an activator.
Abstract: Methods for shutting down and restarting polymerization in a gas phase polymerization reactor are provided. The method can include introducing a polymerization neutralizer to the reactor in an amount sufficient to stop polymerization therein. The method can also include stopping recovery of a polymer product from the reactor and stopping introduction of a catalyst feed and a reactor feed to the reactor. The method can also include adjusting a pressure within the reactor from an operating pressure to an idling pressure. The method can also include adjusting a superficial velocity of a cycle fluid through the reactor from an operating superficial velocity to an idling superficial velocity. The method can also include maintaining the reactor in an idled state for a period of time.
Type:
Grant
Filed:
February 17, 2011
Date of Patent:
December 3, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Eric J. Markel, Robert O. Hagerty, Richard B. Pannell, Michael E. Sieloff, Jerome Holveck
Abstract: A process for polymerizing olefin(s) utilizing a cyclic bridged metallocene catalyst system to produce polymers with improved properties is provided. The catalyst system may include a cyclic bridged metallocene, LA(R?SiR?)LBZrQ2, activated by an activator, the activator comprising aluminoxane, a modified aluminoxane, or a mixture thereof, and supported by a support, where: LA and LB are independently an unsubstituted or a substituted cyclopentadienyl ligand bonded to Zr and defined by the formula (C5H4-dRd), where R is hydrogen, a hydrocarbyl substituent, a substituted hydrocarbyl substituent, or a heteroatom substituent, and where d is 0, 1, 2, 3 or 4; LA and LB are connected to one another with a cyclic silicon bridge, R?SiR?, where R? are independently hydrocarbyl or substituted hydrocarbyl substituents that are connected with each other to form a silacycle ring; and each Q is a labile hydrocarbyl or a substituted hydrocarbyl ligand.
Type:
Grant
Filed:
October 9, 2008
Date of Patent:
December 3, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Chi-I Kuo, Dongming Li, Ching-Tai Lue, Francis C. Rix, Mark G Goode, Daniel P. Zilker, Jr., Tae Hoon Kwalk
Abstract: A process for the polymerization of olefins is disclosed. The process may include: feeding a catalyst, a liquid diluent, and an olefin to a polymerization vessel having, from a polymerization vessel bottom to a polymerization vessel top, a vapor introduction zone, a three-phase reaction zone and a vapor disengagement zone; contacting the catalyst and olefin under conditions of temperature and pressure in the presence of the liquid diluent as a continuous phase in the three-phase reaction zone to form a solid phase polyolefin; withdrawing a gas phase composition from an outlet in fluid communication with the vapor disengagement zone; circulating the gas phase composition through a gas circulation loop to an inlet in fluid communication with the vapor distribution zone at a rate sufficient to agitate the solid and liquid phases within the three-phase reaction zone; and withdrawing a reaction mixture comprising polyolefin and diluents from the three-phase reaction zone.
Type:
Grant
Filed:
July 20, 2010
Date of Patent:
November 19, 2013
Assignee:
Univation Technologies, LLC
Inventors:
F. David Hussein, Michael E. Muhle, Ping Cai, Mark W. Blood
Abstract: Olefin polymerization catalyst systems including a high molecular weight catalyst compound and a low molecular weight catalyst compound, and methods of making same are provided. High molecular weight catalysts include metallocene catalysts and low molecular weight catalysts include non-metallocene compounds including biphenyl phenol compounds. Generally catalyst systems may include less than about 5.0 mol % of the high molecular weight catalyst compound relative to said low molecular weight catalyst. Methods for olefin polymerization including the aforementioned catalyst systems, and polyolefins and products made therefrom.
Type:
Grant
Filed:
November 12, 2008
Date of Patent:
November 19, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Rainer Kolb, Dongming Li, Francis C. Rix, Cesar A. Garcia-Franco
Abstract: A method of polymerizing olefins with catalyst systems, such as, for example, a multimodal catalyst system, wherein the catalyst system is stored at a controlled temperature to minimize loss of catalyst system productivity.
Type:
Grant
Filed:
November 22, 2011
Date of Patent:
October 22, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Natarajan Muruganandam, Jeevan Abichandani, Kersten A. Terry, Hement G. Patel, George Rodriguez
Abstract: Methods and systems for regenerating a purification bed take advantage of inert gas pressure, such as, for example, supplied by a pipeline. The inert gas (102) is provided at a first pressure and combined with a recycle composition (116) from the vessel (110, 110a) containing the material being regenerated. These streams form a regeneration fluid composition (114) at a second pressure less than the inert gas pressure, which is then routed to the vessel to regenerate the purification bed. A jet compressor (108) may be used for the combining of the inert gas and recycle streams. The recycled composition allows reduction in inert gas usage, while a portion is flared or otherwise disposed of.
Abstract: Bimetallic catalysts, methods of producing bimetallic catalysts comprising a modified Ziegler-Natta catalyst and a metallocene, and methods of olefin polymerization using such catalysts are provided. The method of producing the bimetallic catalyst may include combining (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. The molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide may be less than 10:1. The bimetallic catalysts are useful in producing bimodal polymers, particularly bimodal polyethylene, having a Polydispersity (Mw/Mn) of from 12 to 50, which may be used in pipes and films.
Abstract: A process for the preparation of N-arylamine compounds, the process including: reacting a compound having an amino group with an acylating compound in the presence of a base and a transition metal catalyst under reaction conditions effective to form an N-arylamine compound; wherein the transition metal catalyst comprises a complex of a Group 8-10 metal and at least one chelating ligand comprising (R)-(?)-1-[(S)-2-dicyclohexylphosphino]-ferrocenyl]ethyldi-t-butylphosphine.
Abstract: Catalyst feed systems and processes utilizing such systems are described herein. Some embodiments disclosed herein relate to a process for improving the flowability of catalyst in a catalyst feed system, including providing a catalyst feed vessel with at least one heat exchange system for maintaining the catalyst system temperature below a critical flow temperature. Also disclosed is a catalyst feed system for the polymerization of olefins including a catalyst feed vessel; and a heat exchange system for maintaining a temperature of a catalyst within the catalyst feed vessel. Additionally disclosed is a process for polymerization of olefins including maintaining a supported catalyst in a catalyst feed vessel below a critical flow temperature of the catalyst; feeding the catalyst to a polymerization reactor; and contacting the catalyst with an olefin to form a polyolefin.
Type:
Grant
Filed:
May 8, 2012
Date of Patent:
July 30, 2013
Assignee:
Univation Technologies, LLC
Inventors:
William A. Matthews, Michael I. Hurdle, Gerardo Corona, Dung P. Le, Semra Gercek, George W. Schwarz, Jr.
Abstract: The invention generally provides for methods for controlling polymer properties. In particular, invention provides for methods for controlling the comonomer composition distribution of polyolefins such as ethylene alpha-olefin copolymers by altering at least one or more of the following parameters: the molar ratio of hydrogen to ethylene, the molar ratio of comonomer to ethylene, the partial pressure of ethylene, and the reactor temperature without substantially changing the density and/or the melt index of the copolymer.
Type:
Grant
Filed:
January 18, 2008
Date of Patent:
July 30, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Rainer Kolb, James M. Farley, John F. Szul, Mark P. Ossowski
Abstract: Methods for gas phase olefin polymerization are provided. The method can include combining a spray dried catalyst system with a diluent to produce a catalyst slurry. The catalyst system can include a metallocene compound. Ethylene, a continuity additive, and the catalyst slurry can be introduced to a gas phase fluidized bed reactor. The reactor can be operated at conditions sufficient to produce a polyethylene. The spray dried catalyst system can have a catalyst productivity of at least 12,000 grams polyethylene per gram of the catalyst system.
Type:
Grant
Filed:
December 22, 2010
Date of Patent:
July 30, 2013
Assignee:
Univation Technologies, LLC
Inventors:
F. David Hussein, Kevin J. Cann, Ann M. Schoeb-Wolters, Phuong A. Cao, Bruce J. Savatsky, Eric J. Markel, Daniel P. Zilker, Jr., Garth R. Giesbrecht
Abstract: A process for the production of an ethylene alpha-olefin copolymer is disclosed, the process including polymerizing ethylene and at least one alpha-olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20° C. to 150° C. to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density D of 0.927 g/cc or less, a melt index (I2) of from 0.1 to 100 dg/min, a MWD of from 1.5 to 5.0. The resulting ethylene alpha-olefin copolymer may also have a peak melting temperature Tmax second melt satisfying the following relation: Tmax second melt>D*398?245.
Type:
Grant
Filed:
October 22, 2010
Date of Patent:
July 2, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Rainer Kolb, Agapios K. Agapiou, James M. Farley, Eric J. Markel, Bruce J. Savatsky, Christopher R. Davey, Richard B. Pannell
Abstract: A system in one embodiment includes a barrier; an inverted cone in the barrier; and a member under the inverted cone and having dimensions that cause solids passing therealong between the member and the barrier to have about a constant velocity profile thereacross. A method for purging a gas from a solid/gas mixture according to one embodiment includes adding solids to a barrier having an inverted cone therein and a member under the inverted cone, wherein the solids passing along the member have about a constant vertical velocity profile thereacross; and injecting a purge gas into the solids from at least one point adjacent the member.
Type:
Grant
Filed:
October 23, 2009
Date of Patent:
June 25, 2013
Assignee:
Univation Technologies, LLC
Inventors:
William J. Blickley, Mark W. Blood, Glenn W. Baldwin
Abstract: Disclosed is a method for using at least one static probe during polymerization in a fluid bed polymerization reactor system to monitor a coating on a surface of the reactor system and a distal portion of each static probe, wherein the coating is exposed to flowing fluid within the reactor system during the reaction. The surface may be a reactor bed wall (exposed to the reactor's fluid bed) and the coating is exposed to flowing, bubbling fluid within the fluid bed during the reaction. The method may include steps of: during the polymerization reaction, operating the static probe to generate a sequence of data values (“high speed data”) indicative of fluid flow variation (e.g., bubbling or turbulence), and determining from the high speed data at least one electrical property of the coating (e.g., of a portion of the coating on the distal portion of the static probe).
Abstract: A polymerization catalyst system and polymerization processes using the catalyst systems are disclosed. The polymerization catalyst systems may include a) a first catalyst compound, and b) a second catalyst compound, wherein the first catalyst compound includes an oxadiazole-containing compound. In some embodiments, the oxadiazole-containing compound has essentially no hydrogen response, thus allowing better and/or tailored control of product properties when producing polymers using the catalyst system.
Type:
Grant
Filed:
May 14, 2010
Date of Patent:
May 7, 2013
Assignee:
Univation Technologies, LLC
Inventors:
Sun-Chueh Kao, Francis C. Rix, Dongming Li, C. Jeff Harlan, Parul A. Khokhani