Patents Assigned to UNIVERSITY HEALTH NETWORKS
  • Publication number: 20220130520
    Abstract: The present disclosure relates to a method for patient-specific optimization of imaging protocols. According to an embodiment, the present disclosure relates to a method for generating a patient-specific imaging protocol, comprising acquiring scout scan data, the scout scan data including scout scan information and scout scan parameters, generating a simulated image based on the acquired scout scan data, deriving a simulated dose map from the generated simulated image, determining image quality of the generated simulated image by applying machine learning to the generated simulated image, the neural network being trained to generate at least one probabilistic quality representation corresponding to at least one region of the generated simulated image, evaluating the determined image quality relative to a image quality threshold and the derived simulated dose map relative to a dosage threshold, optimizing.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicants: CANON MEDICAL SYSTEMS CORPORATION, University Health Network
    Inventors: Ting XIA, Zhou YU, Patrik ROGALLA, Bernice HOPPEL
  • Patent number: 11298069
    Abstract: Various embodiments are described herein for a system and a method for assessing a risk of ventricular arrhythmias for a patient. For example, the method may comprise receiving ECG data obtained from the patient; analyzing the ECG data to detect abnormal QRS peaks; determining the risk of ventricular arrhythmias for the patient based on the detected abnormal QRS peaks; and providing an indication of the risk of ventricular arrhythmias for the patient. The system may be configured to perform this method.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 12, 2022
    Assignee: University Health Network
    Inventors: Vijay Singh Chauhan, Adrian Michael Suszko
  • Publication number: 20220108461
    Abstract: The present disclosure provides methods, systems, and devices for coregistering imaging data to form three-dimensional superimposed images of target such as a tumor or a surgical bed. A three-dimensional map can be generated by projecting infrared radiation at a target area, receiving reflected infrared radiation, and measuring depth of the target area. A three-dimensional white light image can be created from a captured two-dimensional white light image and the three-dimensional map. A three-dimensional fluorescence image can be created from a captured two-dimensional fluorescence image and the three-dimensional map. The three-dimensional white light image and the three-dimensional fluorescence image can be aligned using one or more fiducial markers to form a three-dimensional superimposed image. The superimposed image can be used to excise cancerous tissues, for example, breast tumors. Images can be in the form of videos.
    Type: Application
    Filed: January 17, 2020
    Publication date: April 7, 2022
    Applicant: University Health Network
    Inventors: Ralph S. DACOSTA, Kathryn OTTOLINO-PERRY, Christopher GIBSON
  • Publication number: 20220104706
    Abstract: An imaging device includes a body having a first end portion configured to be held in a user's hand and a second end portion configured to direct light onto a surgical margin. The device includes at least one excitation light source configured to excite autofluorescence emissions of tissue cells and fluorescence emissions of induced porphyrins in tissue cells of the surgical margin. A white light source is configured to illuminate the surgical margin during white light imaging of the surgical margin. The device includes an imaging sensor, a first optical filter configured to permit passage of autofluorescence emissions of tissue cells and fluorescence emissions of the induced porphyrins in tissue cells to the imaging sensor, and a second optical filter configured to permit passage of white light emissions of tissues in the surgical margin to the imaging sensor. Systems and methods relate to imaging devices.
    Type: Application
    Filed: January 17, 2020
    Publication date: April 7, 2022
    Applicants: SBI ALAPHARMA CANADA INC., University Health Network
    Inventors: Ralph S. DACOSTA, Kathryn OTTOLINO-PERRY, Christopher GIBSON, Nayana Thalanki ANANTHA, Simon TREADWELL, Todd DAYNES, Todd MEANEY, Garret VERMEY, Carl ANNIS
  • Patent number: 11284800
    Abstract: A portable, handheld device for fluorescence-based imaging is provided. The device comprises a wireless communication device having a sensor configured to detect optical signals. The device further comprises an assembly configured to receive and secure the wireless communication device therein. The assembly includes a housing, at least one light source coupled to the housing, a power supply, and an optical filter holder coupled to the housing and configured to receive one or more optical filters. An endoscope portion of the device is positioned relative to the sensor to visualize at least a portion of a confined anatomical space and to receive optical signals from a visualized, illuminated portion of a target positioned within the confined anatomical space. A processor of the device includes image analysis software and is configured to produce a composite representation of the illuminated portion of the target positioned within the confined anatomical space.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 29, 2022
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph Dacosta, Brian C. Wilson, Kai Zhang
  • Publication number: 20220092770
    Abstract: The present disclosure provides methods, systems, and devices for coregistering imaging data to form three-dimensional superimposed images of a biological target such as a wound, a tumor, or a surgical bed. A three-dimensional map can be generated by projecting infrared radiation at a target area, receiving reflected infrared radiation, and measuring depth of the target area. A three-dimensional white light image can be created from a captured two-dimensional white light image and the three-dimensional map. A three-dimensional fluorescence image can be created from a captured two-dimensional fluorescence image and the three-dimensional map. The three-dimensional white light image and the three-dimensional fluorescence image can be aligned using one or more fiducial markers to form a three-dimensional superimposed image. The superimposed image can be used to track wound healing and to excise cancerous tissues, for example, breast tumors. Images can be in the form of videos.
    Type: Application
    Filed: January 17, 2020
    Publication date: March 24, 2022
    Applicant: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph S. DaCosta, Danielle Dunham
  • Publication number: 20220082500
    Abstract: A tissue phantom is disclosed. The tissue phantom includes a first portion having the optical properties of healthy tissue and a second portion having the optical properties of cancerous tissue. Additionally, a method of calibrating an optical instrument is disclosed. The method includes illuminating a tissue phantom with excitation light from the optical instrument, detecting optical emissions emitted by the tissue phantom in response to illumination with the excitation light, and calibrating the optical instrument based upon the detected fluorescence.
    Type: Application
    Filed: January 17, 2020
    Publication date: March 17, 2022
    Applicant: University Health Network
    Inventors: Ralph S. DACOSTA, Kathryn OTTOLINO-PERRY, Christopher GIBSON, Nayana Thalanki ANANTHA, Cristiana O'BRIEN
  • Patent number: 11266383
    Abstract: Various embodiments are described herein for a system and a method for obtaining samples of tissue for analysis by mass spectrometry. A region of interest can be identified in tissue using image data from a first imaging modality that is other than mass spectrometry. At least one tissue sample can be acquired using a tissue sampler from a sampling location related to the region of interest. Mass spectrum data can be generated for the acquired tissue samples using a mass spectrometer. In some embodiments, polarimetry may be used on a tissue slice, mass spectrometry may be performed on the same tissue slice and then H&E imaging may be performed on the same tissue slice.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: March 8, 2022
    Assignee: University Health Network
    Inventors: Arash Zarrine-Afsar, David A. Jaffray, Alessandra Tata, Michael Woolman, Alexander Vitkin
  • Patent number: 11267878
    Abstract: The invention provides antibodies that specifically bind to transthyretin (TTR). The antibodies can be used for treating or effecting prophylaxis of diseases or disorders associated with TTR accumulation or accumulation of TTR deposits (e.g., TTR amyloidosis). The antibodies can also be used for diagnosing TTR amyloidosis and inhibiting or reducing aggregation of TTR, among other applications.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: March 8, 2022
    Assignees: Neotope Neuroscience Limited, University Health Network
    Inventors: Tarlochan S. Nijjar, Avijit Chakrabartty, Jeffrey N. Higaki
  • Publication number: 20220047164
    Abstract: A system for fluorescence-based imaging of a target includes at least one excitation light source configured to emit a homogeneous field of excitation light and positioned to uniformly illuminate a target surface with the homogeneous field of excitation light during fluorescent imaging, a power source, and a portable housing configured to be held in a user's hand during imaging. The housing contains a lens, a filter, an image sensor, and a processor. The filter is configured to permit optical signals responsive to illumination of the target surface and having a wavelength corresponding to at least one of bacterial autofluorescence and tissue autofluorescence to pass through the filter to the image sensor. The at least one excitation light is adjacent to the housing so as to be positioned between the target surface and the image sensor during fluorescent imaging.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 17, 2022
    Applicant: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph S. DACOSTA, Brian C. WILSON, Kai ZHANG
  • Publication number: 20220039656
    Abstract: A method of screening for contamination during food production is disclosed. The method includes applying an exogenous, bacteria-specific contrast agent to a surface to be screened, wherein the surface to be screened is one or more of a food product, a food-preparation surface, a food-handling surface, and a food-equipment surface. The surface is illuminated with excitation light emitted by at least one light excitation light source of a handheld device and optical signals responsive to illumination of the surface are filtered with at least one optical filter of the handheld device.
    Type: Application
    Filed: August 20, 2021
    Publication date: February 10, 2022
    Applicant: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph S. DaCosta, Brian C. Wilson, Kai Zhang
  • Patent number: 11241587
    Abstract: Apparatus for illuminating comprises one or more fibers, the one or more fibers including fiber portions meeting at an apex and a bottom location to form a three dimensional cage; a detector attached to each of the fiber portions for receiving light and transmitting light along each of the fiber portions, respectively; and an illumination member situated within the cage. A method for illuminating a hollow member includes the steps of inserting one or more fibers into the hollow member, wherein one or more fibers include fiber portions that meet at a location to form a three-dimensional cage; permitting light to emit from within the three-dimensional cage and towards the fiber portions; receiving light at distinct locations on each of said fibers; and allowing each of the fibers to transmit the light received on each of the fiber portions out of the hollow member.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: February 8, 2022
    Assignees: Theralase Technologies, Inc., University Health Network
    Inventors: Lothar Lilge, Arkady Mandel, Wayne Embree, Don Lem, Jenny Wu, Roger Dumoulin-White
  • Publication number: 20210378518
    Abstract: A method for fluorescence-based imaging of a target to detect contamination and/or pollutants is disclosed. The method includes labelling a pre-selected biomarker at the target, illuminating the target with excitation light emitted by an excitation light source and having at least one wavelength or wavelength band causing at least the pre-selected biomarker to fluoresce, detecting fluorescence emissions of at least the pre-selected biomarker with an image detector of a handheld imaging device, and determining the presence, location, and/or quantity of contamination and/or pollutants on and/or in the illuminated target based on the detected fluorescence emissions of at least the pre-selected biomarker.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 9, 2021
    Applicant: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph S. Dacosta, Brian C. Wilson, Kai Zhang
  • Patent number: 11191782
    Abstract: There is described herein a method for inducing Tc22 lineage T cells from a population of CD8+ T cells, the method comprising: a) providing a population of CD8+ T cells; b) activating the population of CD8+ T cells; and c) culturing or contacting the population of CD8+ T cells with IL-6.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 7, 2021
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Pamela S. Ohashi, Michael St. Paul
  • Publication number: 20210345601
    Abstract: Provided herein are perfusion fluids for enzymatically cleaving A-antigens from a donor organ, and methods, uses, associated therewith. In particular, the perfusion fluids comprise two enzymes, GalNAcDeacetylase and Galactosaminidase and the fluids may further comprise a buffered extracellular solution and/or a crowing agent. Furthermore, the compositions described herein were found to have activity at temperatures and pH levels suitable for cell viability.
    Type: Application
    Filed: August 16, 2019
    Publication date: November 11, 2021
    Applicants: THE UNIVERSITY OF BRITISH COLUMBIA, UNIVERSITY HEALTH NETWORK
    Inventors: Marcelo CYPEL, Aizhou WANG, Shafique KESHAVJEE, Stephen G. WITHERS, Peter RAHFELD, Jayachandran KIZHAKKEDATHU
  • Patent number: 11162900
    Abstract: A method and device for determining the depth and fluorophore concentration of a fluorophore concentration below the surface of an optically absorbing and scattering medium suitable for use in fluorescence-based surgical guidance such as in tumor resection is described. Long-wavelength stimulus light us used to obtain deep tissue penetration. Recovery of depth is performed by fitting measured modulation amplitudes for each spatial frequency to precomputed modulation amplitudes in a table of modulation amplitudes indexed by optical parameters and depth.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: November 2, 2021
    Assignees: THE TRUSTEES OF DARTMOUTH COLLEGE, UNIVERSITY HEALTH NETWORK
    Inventors: Keith D. Paulsen, David W. Roberts, Dennis Wirth, Brian C. Wilson, Mira Sibai
  • Patent number: 11154198
    Abstract: A system for fluorescence-based imaging of a target includes at least one excitation light source configured to emit a homogeneous field of excitation light and positioned to uniformly illuminate a target surface with the homogeneous field of excitation light during fluorescent imaging, a power source, and a portable housing configured to be held in a user's hand during imaging. The housing contains a lens, a filter, an image sensor, and a processor. The filter is configured to permit optical signals responsive to illumination of the target surface and having a wavelength corresponding to at least one of bacterial autofluorescence and tissue autofluorescence to pass through the filter to the image sensor. The at least one excitation light is adjacent to the housing so as to be positioned between the target surface and the image sensor during fluorescent imaging.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: October 26, 2021
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Ralph S. Dacosta, Brian C. Wilson, Kai Zhang
  • Patent number: 11149312
    Abstract: A method of capturing a population of T-Cell receptor and/or immunoglobulin sequences with variable regions within a patient sample, the method comprising: extracting and/or preparing DNA fragments from the patient sample; ligating a nucleic acid adapter to the DNA fragments, the nucleic acid adapter suitable for recognition by a pre-selected nucleic acid probe; capturing DNA fragments existing in the patient sample using a collection of nucleic acid hybrid capture probes, wherein each capture probe is designed to hybridize to a known V gene segment and/or a J gene segment within the T cell receptor and/or immunoglobulin genomic loci.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 19, 2021
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Trevor John Pugh, David Thomas Mulder, Etienne Raymond G. A. Mahe
  • Patent number: 11141427
    Abstract: There is disclosed herein compositions, methods, uses and systems for reducing pain in a patient that emanates from a body area, preferably spine or joint. Methods of treatment or prevention are described for a disease or condition selected from degenerative disc disease, disc injury, pain, arthritis, or suspected arthritis.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: October 12, 2021
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventor: William Mark Erwin
  • Patent number: 11141426
    Abstract: There is disclosed herein compositions, methods, uses and systems for reducing pain in a patient that emanates from a body area, preferably spine or joint. Methods of treatment or prevention are described for a disease or condition selected from degenerative disc disease, disc injury, pain, arthritis, or suspected arthritis.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: October 12, 2021
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventor: William Mark Erwin