Patents Assigned to University of British Columbia (UBC)
  • Patent number: 10600217
    Abstract: This disclosure provides a computational framework with related methods and systems to enhance the analysis of genomic information. More specifically, the disclosure provides for a graph-based reference genome framework, referred to as a GNOmics Graph Model (GGM), which represents genomic sequence information in edges with nodes representing transitions between edges. The disclosed GGM framework can represent all known polymorphisms simultaneously, including, SNPs, indels, and various rearrangements, in a data-efficient manner. The edges can contain weights to reflect the likelihood of a path within the GGM incorporating any particular edge. The disclosure also provides for systems and methods for using the GGM as a reference model for the rapid assembly of short sequence reads and analysis of DNA sequence variation with enhanced computational efficiency.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 24, 2020
    Assignee: The University of British Columbia
    Inventor: Alice Kaye
  • Patent number: 10584243
    Abstract: Provided herein are polymers and methods for their use in binding a phosphate containing biological macromolecules. Specifically, the methods and uses provided herein may be used to inhibit thrombin binding to polyphosphate or as an antithrombotic agent for the treatment of stroke, acute coronary syndrome, pulmonary embolism, atrial fibrillation, venous and arterial thromboembolism, disseminated intravascular coagulation (DIC), deepvein thrombosis (DVT), peripheral artery disease, trauma-induced coagulopathy, extracorporeal circulation, cancer-associated thrombosis, sepsis, septic shock, Systemic Inflammatory Response Syndrome (SIRS), or inflammation.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 10, 2020
    Assignees: The University of British Columbia, The Board of Trustees of the University of Illinois
    Inventors: Jayachandran Kizhakkedathu, James H. Morrissey, Richard J. Travers, Rajesh Shenoi, Manu Thomas Kalathottukaren
  • Patent number: 10578618
    Abstract: There are provided methods, and devices for assaying for a binding interaction between a protein, such as a monoclonal antibody, produced by a cell, and a biomolecule. The method may include retaining the cell within a chamber having an aperture; exposing the protein produced by the cell to a capture substrate, wherein the capture substrate is in fluid communication with the protein produced by the cell and wherein the capture substrate is operable to bind the protein produced by the cell; flowing a fluid volume comprising the biomolecule through the chamber via said aperture, wherein the fluid volume is in fluid communication with the capture substrate; and determining a binding interaction between the protein produced by the cell and the biomolecule.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: March 3, 2020
    Assignee: The University of British Columbia
    Inventors: Anupam Singhal, Carl L. G. Hansen, John W. Schrader, Charles A. Haynes, Daniel J. Da Costa
  • Publication number: 20200054372
    Abstract: Implantable devices for fixation of curved bones such as the pelvic ring pubic symphysis and acetabulum, and methods for the use of the devices are disclosed. The implantable devices are convertible between a flexible state and a rigid state using a shape locking section. The implantable devices further include a main body and a distal bone interface. In a flexible state, the devices may be inserted along, and conform to a curved pathway, and in the rigid state, the devices may support the mechanical loads required to fixate a fracture.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 20, 2020
    Applicants: University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: David Thomas STINSON, Carly Anderson THALER
  • Patent number: 10564132
    Abstract: Methods and techniques for fabricating layered structures using surface micromachining are described. A sacrificial layer is deposited on a substrate assembly that functions as a bottom electrode. The sacrificial layer is patterned into a first shape. A first polymer-based layer is deposited on the sacrificial layer. A top electrode is patterned on the first polymer-based layer above the sacrificial layer. A second polymer-based layer is deposited on the top electrode such that the top electrode is between the first and second polymer-based layers. The sacrificial layer is etched away to form a cavity under the top electrode.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 18, 2020
    Assignee: The University of British Columbia
    Inventors: Carlos D. Gerardo, Robert Rohling, Edmond Cretu
  • Patent number: 10554110
    Abstract: Displacement devices comprise a stator and a moveable stage. The stator comprises a plurality of coils shaped to provide pluralities of generally linearly elongated coil traces in one or more layers. Layers of coils may overlap in the Z-direction. The moveable stage comprises a plurality of magnet arrays. Each magnet array may comprise a plurality of magnetization segments generally linearly elongated in a corresponding direction. Each magnetization segment has a magnetization direction generally orthogonal to the direction in which it is elongated and at least two of the magnetization directions are different from one another. One or more amplifiers may be connected to selectively drive current in the coil traces and to thereby effect relative movement between the stator and the moveable stage.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 4, 2020
    Assignee: The University of British Columbia
    Inventors: Xiaodong Lu, Irfan-Ur-Rab Usman
  • Publication number: 20200016125
    Abstract: Methods for using compositions comprising a Granzyme B inhibitor and a pharmaceutically acceptable carrier for treating and/or preventing blistering and/or peeling of a skin of a subject are provided. Also provided are methods for using the compositions to improve the healing of a blistered or area of peeled skin of a subject. The compositions can be formulated for oral administration, nasal administration, topical administration, subcorneal administration, intra-epidermal administration, sub-epidermal administration; or for administration by injection.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 16, 2020
    Applicant: The University of British Columbia
    Inventors: David James Granville, Valerio Russo, Yue Shen
  • Patent number: 10533172
    Abstract: The present invention relates to compositions and methods of use thereof for inhibiting mutant HTT mRNA transcription or CAG-expanded HTT protein expression in a cell, comprising contacting the cell with an effective amount of an oligomer targeting a differentiating polymorphism, wherein the differentiating polymorphism is selected from rs72239206, rs363107, rs362313, rs2530595, rs113407847. Specific oligomer sequences are also provided.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: January 14, 2020
    Assignee: The University of British Columbia
    Inventors: Amber L. Southwell, Christopher Kay, Michael R. Hayden, Nicholas S. Caron
  • Patent number: 10525131
    Abstract: Herein are provided derivatized hyperbranched polyglycerols (“dHPGs”). The dHPG comprises a core comprising a hyperbranched polyglycerol derivatized with C1C20 alkyl chains and a shell comprising at least one hydrophilic substituent bound to hydroxyl groups of the core, wherein the hyperbranched polyglycerol comprises from about 1 to about 200 moles of the at least one hydrophilic substituent. The dHPGs are for use as agents for the delivery of a drug or other biologically active moiety to the urinary tract, the digestive tract, the airways, the vaginal cavity and cervix and the peritoneal cavity to treat indications such as cancer, which may be useful in the treatment of or the manufacture of a medicament, in the preparation, of a pharmaceutical composition for the treatment of cancer, as a pre-treatment or co-treatment to improve drug uptake in a tissue. Furthermore, there are provided methods of making dHPGs.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: January 7, 2020
    Assignees: The University of British Columbia, Centre for Drug Research and Development
    Inventors: Helen M. Burt, Donald E. Brooks, Jayachandran N. Kizhakkedathu, Richard Liggins, Dechi Guan, Lu Ye, Clement Mugabe, Alan So, Martin E. Gleave, John K. Jackson, Rajesh Kumar Kainthan
  • Patent number: 10512508
    Abstract: An imagery system includes: a camera having a field of view; a light source including a source of structured light, the light source movable relative to the camera; and at least one processor. The at least one processor is programmed to determine, at least, estimated locations of points on a surface exposed to the structured light according to image data received from the field of view of the camera. The light source may include at least one fiducial marker, and the at least one processor may be programmed to determine the estimated position of the source of structured light according to the at least one fiducial marker in the image data. Also, the camera may be a stereoscopic camera.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: December 24, 2019
    Assignee: The University of British Columbia
    Inventors: Robert Rohling, Philip Edgcumbe, Christopher Nguan
  • Patent number: 10509013
    Abstract: Methods and techniques for fabricating layered structures, such as capacitive micromachined ultrasound transducers, as well as the structures themselves. The layered structure has a membrane that includes a polymer-based layer and a top electrode on the polymer-based layer. The membrane is suspended over a closed cavity and may be actuated by applying a voltage between the top electrode and a bottom electrode that may be positioned along or be a bottom of the closed cavity. The layered structure may be fabricated using a wafer bonding process.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: December 17, 2019
    Assignee: The University of British Columbia
    Inventors: Carlos D. Gerardo, Robert Rohling, Edmond Cretu
  • Patent number: 10508299
    Abstract: Microfluidic devices are provided for trapping, isolating, and processing single cells. The microfluidic devices include a cell capture chamber having a cell funnel positioned within the cell capture chamber to direct a cell passing through the cell capture chamber towards one or more a cell traps positioned downstream of the funnel to receive a cell flowing. The devices may further include auxiliary chambers integrated with the cell capture chamber for subsequent processing and assaying of the contents of a captured cell. Methods for cell capture and preparation are also provided that include flowing cells through a chamber, funneling the cells towards a cell trap, capturing a predefined number of the cells within the trap, interrupting the flow of cells, flowing a wash solution through the chamber to remove contaminants from the chamber, and sealing the predefined number of cells in the chamber.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: December 17, 2019
    Assignee: The University of British Columbia
    Inventors: Carl Lars Genghis Hansen, Michael Vanlnsberghe, Adam White, Oleh Petriv, Tim Leaver, Anupam Singhal, William Bowden, Veronique Lecault, Dan Da Costa, Leo Wu, Georgia Russell, Darek Sikorski
  • Patent number: 10493437
    Abstract: A method of preparing a metal/metal oxide material can make use of a nanostructure that includes a first metal to form the metal oxide, and a reaction surface with a reducing agent on the reaction surface. A second metal is deposited onto the reaction surface to form a bimetallic product. The bimetallic product is calcined to form the metal/metal oxide material.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: December 3, 2019
    Assignee: The University of British Columbia
    Inventors: Mark Maclachlan, Michael Wolf, Gomathi Anandhanatarajan
  • Patent number: 10475525
    Abstract: A method and system to identify an epitope unique to a misfolded form of a protein is provided. Sets of one or more amino acid residues are selected from a model representing the structure of the protein; the free energy of unfolding of each set is determined; and the epitope is identified from the sets having a total probability of unfolding above a minimum probability or a free energy of unfolding below a minimum energy. In other aspects, the invention provides for the use of epitopes identified by the epitope prediction methods, and related antibodies, to diagnose and treat disease and to screen samples for the presence of such epitopes.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: November 12, 2019
    Assignee: The University of British Columbia
    Inventors: Neil R. Cashman, Steven S. Plotkin, William C. Guest
  • Patent number: 10471023
    Abstract: Compounds having a structure of Formula I, or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R1, R2, L1, L2, L3, X, a, b, c, n, and m are as defined herein, are provided. Uses of such compounds for modulating androgen receptor activity and uses as therapeutics as well as methods for treatment of subjects in need thereof, including prostate cancer are also provided.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: November 12, 2019
    Assignees: British Columbia Cancer Agency Branch, The University of British Columbia
    Inventors: Raymond John Andersen, Kunzhong Jian, Marianne Dorothy Sadar, Nasrin R. Mawji, Carmen Adriana Banuelos
  • Publication number: 20190338342
    Abstract: Methods and apparatus for separating, concentrating and/or detecting molecules based on differences in binding affinity to a probe are provided. The molecules may be differentially modified. The molecules may be differentially methylated nucleic acids. The methods can be used in fields such as epigenetics or oncology to selectively concentrate or detect the presence of specific biomolecules or differentially modified biomolecules, to provide diagnostics for disorders such as fetal genetic disorders, to detect biomarkers in cancer, organ failure, disease states, infection or the like.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Applicant: The University of British Columbia
    Inventors: Andrea Marziali, Joel Pel, Jason Donald Thompson, Gosuke Shibahara
  • Patent number: 10466241
    Abstract: There are provided methods, and devices for assaying for a binding interaction between a protein, such as a monoclonal antibody, produced by a cell, and a biomolecule. The method may include retaining the cell within a chamber having an aperture; exposing the protein produced by the cell to a capture substrate, wherein the capture substrate is in fluid communication with the protein produced by the cell and wherein the capture substrate is operable to bind the protein produced by the cell; flowing a fluid volume comprising the biomolecule through the chamber via said aperture, wherein the fluid volume is in fluid communication with the capture substrate; and determining a binding interaction between the protein produced by the cell and the biomolecule.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: November 5, 2019
    Assignee: The University of British Columbia
    Inventors: Anupam Singhal, Carl L. G. Hansen, John W. Schrader, Charles A. Haynes, Daniel J. Da Costa
  • Patent number: 10458892
    Abstract: An apparatus for monitoring particulate matter includes a fluid flow passage. Some embodiments include a cartridge defining a part of the fluid flow passage extending from a cartridge inlet to a cartridge outlet and a particle size selector in the fluid-flow passage between the cartridge inlet and the cartridge outlet. The particle size selector comprises a curve section in the fluid flow passage where the flow of fluid undergoes a change in direction and an impact surface extending transversely to the fluid flow passage on an outside of the curve. A particle counter is located downstream from the particle size selector. A pump is connected to drive a flow of a fluid containing the particulate matter through the fluid flow passage. The apparatus may be made compact. Embodiments may be worn and used to monitor exposure of persons to particulate matter.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: October 29, 2019
    Assignee: The University of British Columbia
    Inventors: Boris Stoeber, Winnie Chu, Leon Yuen
  • Publication number: 20190315823
    Abstract: The present invention relates generally to peptides and more specifically to anti-biofilm and immunomodulatory peptides.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 17, 2019
    Applicant: The University of British Columbia
    Inventors: Robert E.W. Hancock, Cesar de la Fuente Nunez, Jason Kindrachuk, Havard Jenssen, Joerg Overhage, Evan Haney
  • Patent number: 10441606
    Abstract: Embodiments presented herein relate to various polymers. Some of the polymer embodiments are heparin binding polymers. Some embodiments of the heparin binding polymers can be employed to bind to heparin for methods such as separating, purifying, removing, and/or isolating heparin and heparin like molecules.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 15, 2019
    Assignee: University of British Columbia
    Inventors: Jayachandran N. Kizhakkedathu, Rajesh A. Shenoi, Cedric J. Carter, Donald E. Brooks