Patents Assigned to University of Kansas
  • Patent number: 10450305
    Abstract: Compounds can be used for treating polycystic kidney disease (PKD). As such, these compounds can be used in associated methods. The methods can include: method of modulating (e.g., activating) Liver kinase B1 (LKB1); method of modulating (e.g., decreasing activity) mammalian target of rapamycin (mTOR). The methods may include introducing the compound in a therapeutically effective amount to a subject having PKD. The methods may include introducing the compound in a therapeutically effective amount to a subject having Autosomal Dominant PKD. The compounds can be used in methods of treating a disease modulated by a mTOR pathway, which can include introducing the compound in a therapeutically effective amount to a subject having the disease modulated by the mTOR pathway.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: October 22, 2019
    Assignee: The University of Kansas
    Inventors: Darren Paul Wallace, Bhaskar Chandra Das
  • Publication number: 20190314554
    Abstract: An implantable hydrogel precursor composition can include: a cross-linkable polymer matrix that is biocompatible; and a plurality of polymer particles in the cross-linkable polymer matrix. The cross-linkable polymer matrix can include a cross-linkable hyaluronic acid polymer that has cross-linkable functional groups. The hyaluronic acid polymer can be a methacrylated hyaluronic acid polymer. The methacrylated hyaluronic acid polymer can have a molecular weight from about 500 kDa to about 1.8 MDa. The polymer particles can include a cross-linked hyaluronic acid. The cross-linkable polymer matrix having the polymer particles has a yield stress. The cross-linkable polymer matrix having the polymer particles has shape retention at physiological temperatures. The composition can include live cells in the cross-linkable polymer matrix. The composition can include a biologically active agent in the cross-linkable polymer matrix.
    Type: Application
    Filed: May 31, 2019
    Publication date: October 17, 2019
    Applicant: THE UNIVERSITY OF KANSAS
    Inventors: Michael DETAMORE, Emily BECK, Stevin GEHRKE, Cory BERKLAND
  • Patent number: 10434511
    Abstract: A microfluidic exosome profiling platform integrating exosome isolation and targeted proteomic analysis is disclosed. This platform is capable of quantitative exosomal biomarker profiling directly from 30 ?L plasma samples within approximately 100 minutes with markedly enhanced sensitivity and specificity. Identification of distinct subpopulation of patient-derived exosomes is demonstrated by probing surface proteins and multiparameter analyses of intravesicular biomarkers in the selected subpopulation. The expression of IGF-1R and its phosphorylation level in non-small cell lung cancer (NSCLC) patient plasma is assessed, as a non-invasive alternative to the conventional biopsy and immunohistochemistry.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: October 8, 2019
    Assignee: University of Kansas
    Inventors: Mei He, Yong Zeng, Andrew Godwin
  • Patent number: 10420847
    Abstract: A system and method for evaluating wound healing dressings, treatments, and other variables. The present invention includes in vitro systems and methods for testing wound dressing materials for bacterial control, moisture control, and surface contact properties. The present invention further includes in vivo systems and methods for testing wound dressings, treatments, and other variables utilizing arrays of wound wells on an experimental subject animal. Wound arrays allow for different wound healing variables to be tested with numerous experimental trials within the same subject animal, giving reliable results and reducing the number of subject animals required for testing.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: September 24, 2019
    Assignee: University of Kansas Medical Center Research Institute, Inc.
    Inventor: David S. Zamierowski
  • Patent number: 10413450
    Abstract: A barrier system is provided for use in reducing infections associated with post-operative surgical incision and/or a percutaneous medical device, such as a catheter, that is disposed within the surgical incision. Such a barrier system may include: a barrier device having a skin-contacting surface and a catheter-receiving surface; and an adhesive composition configured for adhering to skin, the barrier device, and/or the catheter so as to form a barrier at or adjacent to an incision in the skin where the catheter is percutaneously inserted through the skin. A tensioning anchor and associated system of two or more tensioning anchors is provided for post-operative wound closure. A method for applying and removing the barrier device and tensioning anchors is also provided.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: September 17, 2019
    Assignee: University of Kansas
    Inventors: Stephen Clifford Waller, Dhaval Bhavsar
  • Patent number: 10407612
    Abstract: The invention is directed to polymers that self-crosslink at acidic pH or can be crosslinked by phenolic agents in brine. Such polymers have lower viscosity and can be pumped deep into reservoirs, where they will cross link in situ, thus increasing their viscosity and/or form a gel and blocking thief zones. Methods of making and using such polymers are also provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: September 10, 2019
    Assignees: ConocoPhillips Company, University of Kansas
    Inventors: Huili Guan, Cory Berkland, Ahmad Moradi-Araghi, Jenn-Tai Liang, Terry M. Christian, Riley B. Needham, James H. Hedges, Min Cheng, Faye L. Scully
  • Patent number: 10399964
    Abstract: A compound can be a fluorescent taxane derivative having a structure of Formula 1, salt, stereoisomer, tautomer, polymorph, or solvate thereof. Formula 1 can be defined as: L, L-NH, or L-NH—C?O is a linker; and R is a substituent, where —OH, —O?, —NH2, and NH—CH3 are examples. Examples of linkers can include glycine, beta-alanine, gamma-aminobutyric acid (GABA). Pharmaceutical compositions can include the compound and a pharmaceutically acceptable carrier, and may be configured for intravenous injection. The fluorescent taxane derivative can be used to treat cancer and non-cancer diseases. The fluorescent taxane derivative can be used to monitor cellular efflux and determine whether a cell will efflux paclitaxel.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 3, 2019
    Assignee: The University of Kansas
    Inventor: Blake R. Peterson
  • Patent number: 10391206
    Abstract: A cannula device for draining sub-retinal fluid externally to the eye includes a shaft, an outer sleeve, and an inner sleeve. The outer sleeve and the inner sleeve have a curve therein to access the back of the eye externally. The outer sleeve is extendable relative to the inner sleeve and the shaft, and the outer sleeve includes a penetrative tip to penetrate the sclera and provide access to the sub-retinal fluid to the inner sleeve.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: August 27, 2019
    Assignee: University of Kansas
    Inventor: Ajay Singh
  • Publication number: 20190248723
    Abstract: A method for processing lignin may comprise flowing a lignin composition comprising a lignin polymer and a solvent through a reaction chamber of a continuous flow reactor, the lignin polymer comprising hydroxycinnamic groups bound to a polymeric backbone; flowing ozone through the reaction chamber containing the lignin composition under conditions to maximize oxidative cleavage of the hydroxycinnamic groups to produce one or more types of aromatic monomers while minimizing oxidative cleavage of the polymeric backbone; and collecting the one or more types of aromatic monomers, e.g., by a size-selective membrane separation device.
    Type: Application
    Filed: July 13, 2017
    Publication date: August 15, 2019
    Applicant: University of Kansas
    Inventors: Bala SUBRAMANIAM, Andrew M. DANBY, Michael D. LUNDIN
  • Publication number: 20190218543
    Abstract: The disclosure relates to nerve derived adult pluripotent stem cells characterized by expression of Oct4, Sox2, c-Myc, and Klf4, methods for obtaining them, and their use.
    Type: Application
    Filed: April 4, 2019
    Publication date: July 18, 2019
    Applicant: University of Kansas
    Inventor: Michael H. Heggeness
  • Publication number: 20190219590
    Abstract: The description relates to a method and kits for determining the total carbonylation level on a polypeptide.
    Type: Application
    Filed: November 19, 2018
    Publication date: July 18, 2019
    Applicants: Genentech, Inc., University of Kansas
    Inventors: Anna Mah, Christian Schoeneich, Yi Yang, Di Gao, Lynn A. Gennaro
  • Patent number: 10350263
    Abstract: A method of promoting hair growth can include: a polypeptide having a sequence that has at least 75% complementarity to or at least 75% identical to SPR4; and topically administering the polypeptide to a subject. This can include putting or causing the polypeptide to be in the skin, such as in any dermal layer. In one aspect, the method can include administering the composition topically so as to administer the polypeptide to the subject. In one aspect, the method can include administering the polypeptide to skin of the subject. In one aspect, the method can include administering the polypeptide to a hair follicle of the subject. In one aspect, the method can include administering the polypeptide to a bald spot of the subject.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: July 16, 2019
    Assignee: The University of Kansas
    Inventors: Peter S. N. Rowe, Aline Martin, Nicolae Valentin David, M. Laird Forrest, Kenneth Ryan Moulder, Shuang Cai, Daniel J. Aires
  • Patent number: 10350599
    Abstract: A microfluidic exosome profiling platform integrating exosome isolation and targeted proteomic analysis is disclosed. This platform is capable of quantitative exosomal biomarker profiling directly from plasma samples with markedly enhanced sensitivity and specificity. Identification of distinct subpopulation of patient-derived exosomes is demonstrated by probing surface proteins and multiparameter analyzes of intravesicular biomarkers in the selected subpopulation. The expression of IGF-1R and its phosphorylation level in non-small cell lung cancer (NSCLC) patient plasma is assessed as a non-invasive alternative to the conventional biopsy and immunohistochemistry. Detection of ovarian cancer also is assessed. The microfluidic chip, which may be fabricated of a glass substrate and a layer of poly(dimethylsiloxane), includes a serpentine microchannel to mix a fluid and a microchamber for the collection and detection of exosomes.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: July 16, 2019
    Assignees: University of Kansas, Kansas State University Research Foundation
    Inventors: Zheng Zhao, Mei He, Yong Zeng
  • Patent number: 10335515
    Abstract: An implantable hydrogel precursor composition can include: a cross-linkable polymer matrix that is biocompatible; and a plurality of polymer particles in the cross-linkable polymer matrix. The cross-linkable polymer matrix can include a cross-linkable hyaluronic acid polymer that has cross-linkable functional groups. The hyaluronic acid polymer can be a methacrylated hyaluronic acid polymer. The methacrylated hyaluronic acid polymer can have a molecular weight from about 500 kDa to about 1.8 MDa. The polymer particles can include a cross-linked hyaluronic acid. The cross-linkable polymer matrix having the polymer particles has a yield stress. The cross-linkable polymer matrix having the polymer particles has shape retention at physiological temperatures. The composition can include live cells in the cross-linkable polymer matrix. The composition can include a biologically active agent in the cross-linkable polymer matrix.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 2, 2019
    Assignee: The University of Kansas
    Inventors: Michael Detamore, Emily Beck, Stevin Gehrke, Cory Berkland
  • Patent number: 10323174
    Abstract: The invention is directed to delayed gelation agents comprising a degradable polymeric cage containing therein one or more gelation agents. The cage degrades in situ, e.g., in an oil reservoir, thus releasing the gelation agent(s), which can then crosslink second polymers in situ to form a gel.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: June 18, 2019
    Assignees: ConocoPhillips Company, University of Kansas
    Inventors: Huili S. Guan, Faye L. Scully, Cory Berkland, Ahmad Moradi-Araghi, Jenn-Tai Liang, David R. Zornes, Riley B. Needham, James H. Hedges, Min Cheng, James P. Johnson
  • Patent number: 10320013
    Abstract: A gas diffusion layer having a first major surface and a second major surface which is positioned opposite to said first major surface and an interior between said first and second major surfaces is formed. The gas diffusion layer comprises a porous carbon substrate which is directly fluorinated in the interior and is substantially free of fluorination on at least one of the first major surfaces or the second major surfaces, and preferably both surfaces. The gas diffusion layer may be formed using protective sandwich process during direct fluorination or by physically or chemically removing the C—F atomic layer at the major surfaces, for example by physical plasma etching or chemical reactive ion etching.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: June 11, 2019
    Assignee: UNIVERSITY OF KANSAS
    Inventors: Trung Van Nguyen, Xuhai Wang
  • Patent number: 10301314
    Abstract: The disclosure provides compounds for reducing the prevalence of the perinucleolar compartment in cells, for example, of formula (I), wherein R1, R2, R3, and R4 are as defined herein, that are useful in treating a disease or disorder associated with increased prevalence of the perinucleolar compartment, such as cancer. Also disclosed is a composition containing a pharmaceutically acceptable carrier and at least one compound embodying the principles of the invention, and a method of treating or preventing cancer in a mammal.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: May 28, 2019
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, University of Kansas, Northwestern University
    Inventors: Kevin Frankowski, Samarjit Patnaik, Sui Huang, Juan Jose Marugan, John Norton, Frank J. Schoenen, Noel Terrence Southall, Steven Titus, Wei Zheng, Chen Wang
  • Patent number: 10259843
    Abstract: Cyclic tetrapeptide stereochemical isomers of CJ-15,208, pharmaceutical compositions from such cyclic tetrapeptides, and methods of using such pharmaceutical compositions. The cyclic tetrapeptide compounds and pharmaceutical compositions disclosed herein are potent analgesics active in several pain models with generally minimal tolerance and reduced likelihood to induce addiction relative to other known opiates.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: April 16, 2019
    Assignee: University of Kansas
    Inventors: Jane V. Aldrich, S P Sanjeewa Nilendra Senadheera
  • Patent number: 10261107
    Abstract: A method of imaging a sample via scanning resonator microscopy is provided comprising positioning a whispering gallery mode (WGM) optical resonator at a first location over the surface of the sample, the WGM optical resonator characterized by at least one resonance frequency, wherein the WGM optical resonator is mounted to the free end of an atomic force microscopy (AFM) cantilever such that the WGM optical resonator moves with the AFM cantilever, and wherein the AFM cantilever is operably coupled to an AFM system configured to provide a topographical image of the sample; evanescently coupling excitation light into the WGM optical resonator; detecting light derived from the excitation light to monitor for a shift in the at least one resonance frequency induced by the surface of the sample; and repeating steps (a)-(c) at least at a second location over the surface of the sample.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: April 16, 2019
    Assignee: UNIVERSITY OF KANSAS
    Inventor: Robert Conley Dunn
  • Patent number: D853939
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: July 16, 2019
    Assignee: University of Kansas
    Inventors: Ronald M. Barrett, Richard B. Bramlette, Robert B. Honea