Patents Assigned to University of North Carolina at CHapel Hill
  • Patent number: 11225508
    Abstract: This invention relates to SARS-CoV-2 viruses adapted with nanoluciferase reporter molecules and mouse-adapted SARS-CoV-2 viruses, compositions including the same and methods of use thereof.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: January 18, 2022
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Ralph Baric, Kenneth Harold Dinnon, III, Sarah Rebecca Leist
  • Patent number: 11219694
    Abstract: The subject matter described herein is directed to methods of modifying the micro-environment of a target cell or The methods comprise systemically administering to a subject a composition comprising a vector, wherein the vector comprises a construct for the expression of a trap in the target cell, wherein the trap is expressed in the target cell thereby modifiying the micro-environment. Also described herein are methods of reducing metastasis of a cancer comprising, systemically administering to a subject suffering from the cancer, a composition comprising a vector, wherein the vector comprises a construct for the expression of a trap, wherein the trap is delivered to and then expressed in tissue susceptible to metastasis, wherein metastasis of the cancer to the tissue is reduced. Compositions for carrying out the methods are also described.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 11, 2022
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Leaf Huang, Tyler Goodwin, Rihe Liu, Lei Miao
  • Patent number: 11219595
    Abstract: Geometrically complex intravaginal rings, systems and methods of making the same are provided herein. Disclosed herein are geometrically complex intravaginal rings with tunable and enhanced drug release, which in some embodiments can be fabricated by 3D printing technologies. The disclosed IVRs include a ring structure comprising a plurality of unit cells or macroscopic and/or microscopic architecture, which can be tuned to control the loading capacity of an active compound within the IVR, the diffusion of an active compound from the IVR, the surface area of the IVR, and/or the mechanical properties of the IVR. The disclosed geometrically complex IVRs can provide superior control over drug loading and drug release compared to conventional IVRs fabricated by injection molding or hot-melt extrusion.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: January 11, 2022
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Soumya Rahima Benhabbour, Rima Janusziewicz, Sue J. Mecham
  • Patent number: 11214779
    Abstract: Disclosed herein is a genetically encoded light- or chemically-activated Cas9 engineered through the site-specific installation of an activatable lysine amino acid. Such activatable Cas9 proteins can be used in CRISPR/Cas9 systems to control gene expression temporally, spatially, or both. Systems, methods, kits, and compositions for manipulation of sequences and/or activities of target sequences are provided. Also provided are methods of directing CRISPR complex formation in cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas9 system.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: January 4, 2022
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, The University of North Carolina at Chapel Hill
    Inventors: Alexander Deiters, James B. Hemphill, Aravind Asokan, Erin Borchardt
  • Patent number: 11212531
    Abstract: According to one method, a method for decoding data using rate sorted entropy coding occurs at a video decoder implemented using at least one processor. The method comprises: receiving rate control information associated with a first bitstream; determining, using the rate control information, a maximum amount of bits available for a next symbol in the first bitstream; determining, using a symbol probability model and a first deterministic algorithm, an amount of bits for a least probable value of the next symbol; and determining that the next symbol is included in the first bitstream if the amount of bits for the least probable value of the next symbol is less than or equal to the maximum amount of bits available for the first bitstream.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: December 28, 2021
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Ketan Dasharath Mayer-Patel, Aaron Joseph Smith
  • Patent number: 11208438
    Abstract: The present invention provides AAV capsid proteins comprising a modification in the amino acid sequence and virus vectors comprising the modified AAV capsid protein. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: December 28, 2021
    Assignees: The University of North Carolina at Chapel Hill, University of Florida Research Foundation, Inc.
    Inventors: Aravind Asokan, Mavis Agbandje-McKenna, Long Ping Victor Tse, Brittney Gurda
  • Patent number: 11203772
    Abstract: Methods for preparing synthetic heparins are provided. Synthetic heparin compounds, including ultralow molecular weight heparin compounds are provided. Also provided are methods of chemoenzymatically synthesizing structurally homogeneous ultra-low molecular weight heparins. Heparin compounds provided herein can have anticoagulant activity.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 21, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Yongmei Xu, Jian Liu
  • Patent number: 11193110
    Abstract: A method of making a live cell construct is carried out by: (a) providing a non-cellular support having a top surface and a bottom surface, (b) contacting live undifferentiated cells to the non-cellular support, and then (c) propagating a gastrointestinal epithelial cell monolayer on said top surface. In some embodiments, the live cells in the monolayer include: (i) undifferentiated cells (e.g., stem or progenitor cells); and (ii) optionally, but in some embodiments preferably, differentiated cells (e.g., enterocytes, Paneth cells, enteroendocrine cells, tuft cells, microcells, intra-epithelial lymphocytes, and/or goblet cells). Constructs formed by such methods and methods of using the same (e.g., in high through-put screening) are also described.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: December 7, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Nancy Allbritton, Yuli Wang, Christopher Sims, Scott Magness, Scott Bultman
  • Patent number: 11195048
    Abstract: In implementations of generating descriptions of image relationships, a computing device implements a description system which receives a source digital image and a target digital image. The description system generates a source feature sequence from the source digital image and a target feature sequence from the target digital image. A visual relationship between the source digital image and the target digital image is determined by using cross-attention between the source feature sequence and the target feature sequence. The system generates a description of a visual transformation between the source digital image and the target digital image based on the visual relationship.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 7, 2021
    Assignees: Adobe Inc., The University Of North Carolina At Chapel Hill
    Inventors: Trung Huu Bui, Zhe Lin, Hao Tan, Franck Dernoncourt, Mohit Bansal
  • Patent number: 11186681
    Abstract: The invention generally relates to compositions comprising degradable polymers and methods of making degradable polymers. Specifically, the disclosed degradable polymers comprise a biodegradable polymer backbone, a nitric oxide linker moiety, and a nitric oxide molecule. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 30, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Mark Schoenfisch, Lei Yang, Yuan Lu
  • Patent number: 11180759
    Abstract: The invention relates to the inhibition of expression of mutant KRAS sequences using RNA interference, antisense oligonucleotides, and chemically-modified oligonucleotides.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: November 23, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Chad Pecot, Salma H. Azam
  • Patent number: 11179723
    Abstract: A cell processing system, fluidics cartridge, and methods for using actuated surface-attached posts for processing cells are disclosed. Particularly, the cell processing system includes a fluidics cartridge and a control instrument. The fluidics cartridge includes a cell processing chamber that has a micropost array therein, a sample reservoir and a wash reservoir that supply the cell processing chamber, and a waste reservoir and an eluent reservoir at the output of the cell processing chamber. A micropost actuation mechanism and a cell counting mechanism are provided in close proximity to the cell processing chamber. A method is provided of using the cell processing system to collect, wash, and recover cells. Another method is provided of using the cell processing system to collect, wash, count, and recover cells at a predetermined cell density.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 23, 2021
    Assignees: REDBUD LABS, INC., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Patent number: 11177020
    Abstract: Methods and uses for molecular tags are disclosed. Molecular tags may be attached to nucleic acid molecules. The attachment of the nucleic acid molecules prior to PCR amplification and sequencing improves the accuracy of genetic analysis and detection of genetic variations and diversity. Molecular tags may also be used for detection of drug-resistant variants. Methods for using molecular tags for determining and correcting PCR errors and/or sequencing error are also disclosed.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 16, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Cassandra B. Jabara, Jeffrey A. Anderson, Ronald I. Swanstrom
  • Publication number: 20210346424
    Abstract: Disclosed herein are cyclodextrin molecules covalently modified to store and release nitric oxide, as well as methods of making and uses thereof. The covalently modified cyclodextrin molecules may be tailored, in several embodiments, to release nitric oxide in a controlled manner and are useful for reduction and/or eradication of bacteria and for the treatment of disease.
    Type: Application
    Filed: May 17, 2021
    Publication date: November 11, 2021
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Mark H. Schoenfisch, Haibao Jin
  • Patent number: 11168373
    Abstract: Disclosed herein are DNA amplification methods for quantifying DNA fragments of a target DNA in a sample by size. This can be used, for example, to detect tumor-derived viral DNA in blood sample and distinguish it from larger viral DNA from non-tumor sources. In particular, disclosed herein are methods of detecting, monitoring or treating a human papilloma virus (HPV)-associated malignancy in a subject that involves detecting a presence or absence of at least one circulating tumor-derived HPV DNA in a sample from the subject. Kits for accomplishing the same are also provided.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: November 9, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Gaorav Gupta, Bhishamjit S. Chera, Sunil Kumar
  • Patent number: 11158496
    Abstract: A miniature electrode apparatus is disclosed for trapping charged particles, the apparatus including, along a longitudinal direction: a first end cap electrode; a central electrode having an aperture; and a second end cap electrode. The aperture is elongated in the lateral plane and extends through the central electrode along the longitudinal direction and the central electrode surrounds the aperture in a lateral plane perpendicular to the longitudinal direction to define a transverse cavity for trapping charged particles.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 26, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: J. Michael Ramsey, Kevin Schultze
  • Publication number: 20210316303
    Abstract: A flow cell is provided that includes surface-attached structures in a chamber. The structures are movable in response to a magnetic or electric field. A target extraction or isolation system includes the flow cell and a driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the structures. The flow cell may be utilized to extract or isolate a target from a sample flowing through the flow cell. Further, a microfluidic system is provided that includes surface-attached structures and a microarray, wherein actuated motion of the surface-attached structures is used to enhance flow, circulation, and/or mixing action for analyte capture on the microarray.
    Type: Application
    Filed: February 16, 2021
    Publication date: October 14, 2021
    Applicants: Redbud Labs, Inc., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Patent number: 11137719
    Abstract: A method for digital holography includes modeling a hologram using a forward propagation model that models propagation of a light field from a hologram plane to an image plane. The method further includes computing the hologram as a solution to an optimization problem that is based on the model. The method further includes configuring at least one spatial light modulator using the hologram. The method further includes illuminating the spatial light modulator using a light source to create a target image.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: October 5, 2021
    Assignee: UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Praneeth Kumar Chakravarthula, Felix Heide
  • Patent number: 11139068
    Abstract: A method for smart image protocoling includes, using a medical imaging device, obtaining, using a first medical imaging sequence, a first set of medical images of a patient. Anatomical and, if present, disease features are extracted from the first set of medical images. A machine learning trained algorithm is used to determine, in real time, and based on the extracted anatomical and/or disease features, whether a desired medical imaging goal is achieved for the patient. In response to determining that the desired medical imaging goal is achieved, at least one image from the first set of medical images is output as a final image. In response to determining that the desired medical imaging goal has not been achieved, the machine learning trained algorithm is used to select a second medical imaging sequence. A second set of medical images of the patient is obtained using the second medical imaging sequence. The above outlined procedures will be repeated until the final imaging goal is achieved for a patient.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: October 5, 2021
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Weili Lin, Dinggang Shen, Jeffrey Keith Smith
  • Patent number: 11129923
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: September 28, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier