Patents Assigned to University of Washington through its Center for Commercialization
  • Patent number: 11566285
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11566288
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11566286
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: January 31, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Publication number: 20230023536
    Abstract: Provided herein, among other aspects, are methods and apparatuses for analyzing particles in a sample. In some aspects, the particles can be analytes, cells, nucleic acids, or proteins and contacted with a tag, partitioned into aliquots, detected by a ranking device, and isolated. The methods and apparatuses provided herein may include a microfluidic chip. In some aspects, the methods and apparatuses may be used to quantify rare particles in a sample, such as cancer cells and other rare cells for disease diagnosis, prognosis, or treatment.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 26, 2023
    Applicant: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. CHIU, Mengxia ZHAO, Wyatt NELSON, Perry G. SCHIRO
  • Patent number: 11555220
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 17, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11549144
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 10, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Publication number: 20220356512
    Abstract: Methods, devices, and systems for performing digital assays are provided. In certain aspects, the methods, devices, and systems can be used for the amplification and detection of nucleic acids. In certain aspects, the methods, devices, and systems can be used for the recognition, detection, and sizing of droplets in a volume. Also provided are compositions and kits suitable for use with the methods and devices of the present disclosure.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 10, 2022
    Applicant: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. CHIU, Jason E. KREUTZ, Gloria S. YEN, Bryant S. FUJIMOTO
  • Patent number: 11480575
    Abstract: Provided herein, among other aspects, are methods and apparatuses for analyzing particles in a sample. In some aspects, the particles can be analytes, cells, nucleic acids, or proteins and contacted with a tag, partitioned into aliquots, detected by a ranking device, and isolated. The methods and apparatuses provided herein may include a microfluidic chip. In some aspects, the methods and apparatuses may be used to quantify rare particles in a sample, such as cancer cells and other rare cells for disease diagnosis, prognosis, or treatment.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: October 25, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. Chiu, Mengxia Zhao, Wyatt Nelson, Perry G. Schiro
  • Publication number: 20220331418
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 20, 2022
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Michael J. Gale, JR., Gretja Schnell, Yueh-Ming Loo
  • Publication number: 20220315918
    Abstract: Contiguity information is important to achieving high-quality de novo assembly of mammalian genomes and the haplotype-resolved resequencing of human genomes.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 6, 2022
    Applicant: University of Washington Through Its Center for Commercialization
    Inventors: Jay Ashok Shendure, Jerrod Joseph Schwartz, Andrew Colin Adey, Cho li Lee, Joseph Brian Hiatt, Jacob Otto Kitzman, Akash Kumar
  • Patent number: 11427857
    Abstract: Methods, devices, and systems for performing digital assays are provided. In certain aspects, the methods, devices, and systems can be used for the amplification and detection of nucleic acids. In certain aspects, the methods, devices, and systems can be used for the recognition, detection, and sizing of droplets in a volume. Also provided are compositions and kits suitable for use with the methods and devices of the present disclosure.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: August 30, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. Chiu, Jason E. Kreutz, Gloria S. Yen, Bryant S. Fujimoto
  • Patent number: 11411435
    Abstract: An integrated circuit, such as included as a portion of a sensor node, can include a regulator circuit having an input coupleable to an energy harvesting transducer. The integrated circuit can include a wireless receiver circuit coupled to the regulator circuit and configured to wirelessly receive at least enough operating energy to establish operation of the sensor node without requiring the energy harvesting transducer. The integrated circuit can include a digital processor circuit coupled to the regulator circuit and a power management processor circuit. The digital processor circuit or one or more other circuits can include a subthreshold operational mode established by the power management processor circuit based on the selected energy consumption level. For example, establishing the subthreshold operational mode can include adjusting or selecting a supply voltage so as to establish subthreshold operation of a field effect transistor (FET) in the digital processor circuit or other circuits.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 9, 2022
    Assignees: University of Virginia Patent Foundation, University of Washington through its Center for Commercialization
    Inventors: Benton H. Calhoun, Brian Otis
  • Patent number: 11408884
    Abstract: Lyophilized chromophoric polymer dot compositions are provided. Also disclosed are methods of making and using the lyophilized compositions, methods of dispersing the lyophilized compositions in aqueous solutions and kits supplying the compositions.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: August 9, 2022
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Daniel T. Chiu, Wei Sun, Jiangbo Yu, Changfeng Wu, Fangmao Ye
  • Patent number: 11401547
    Abstract: Methods and systems for digital measurements are provided. In an embodiment, the method includes producing a plurality of droplets, wherein at least one of the droplets of the plurality of droplets contains an analyte molecule from a sample; measuring at least a first portion of the plurality of droplets to determine individual volumes of droplets in the first portion of the plurality of droplets; analyzing at least a second portion of the plurality of droplets to determine a number of droplets in the second portion of the plurality of droplets that contain the analyte molecule; and using individual volumes of the droplets in the first portion of the plurality of droplets and the number of droplets in the second portion of the plurality of droplets that contain the analyte molecule to determine the concentration of the analyte molecule in the sample.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: August 2, 2022
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Daniel T. Chiu, Bryant S. Fujimoto, Alexander R. Gansen, Gloria S. Yen, Robert M. Lorenz
  • Patent number: 11365943
    Abstract: A baffled ram accelerator system includes a ram accelerator tube with an inner surface and an outer surface and a plurality of baffles disposed on the inner surface. The plurality of baffles forms a sequential series of propellant chambers along the longitudinal axis of the ram accelerator tube. An accelerator gun is also disposed on an input end of the ram accelerator tube, and the accelerator gun is positioned to fire a projectile into the ram accelerator tube.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: June 21, 2022
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Carl Knowlen, Adam P. Bruckner, Andrew J. Higgins, Viggo Hansen
  • Patent number: 11324817
    Abstract: Compositions and methods are provided that enable activation of innate immune responses through RIG-I like receptor signaling. The compositions and methods incorporate synthetic nucleic acid pathogen associated molecular patterns (PAMPs) that comprise elements initially characterized in, and derived from, the hepatitis C virus genome.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: May 10, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Michael J. Gale, Jr., Gretja Schnell, Yueh-Ming Loo
  • Patent number: 11330170
    Abstract: Methods and systems for acquiring and/or projecting images from and/or to a target area are provided. Such a method or system can include an optical fiber assembly which may be driven to scan the target area in a scan pattern. The optical fiber assembly may provide multiple effective light sources (e.g., via a plurality of optical fibers) that are axially staggered with respect to an optical system located between the optical fiber and the target area. The optical system may be operable to focus and/or redirect the light from the multiple light sources onto separate focal planes. A composite image may be generated based on light reflected from and/or projected onto the separate focal planes. The composite image may have an extended depth of focus or field spanning over a distance between the separate focal planes while maintaining or improving image resolution.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: May 10, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Eric J. Seibel, Brian T. Schowengerdt
  • Patent number: 11299730
    Abstract: Contiguity information is important to achieving high-quality de novo assembly of mammalian genomes and the haplotype-resolved resequencing of human genomes. The methods described herein pursue cost-effective, massively parallel capture of contiguity information at different scales.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: April 12, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jay Ashok Shendure, Jerrod Joseph Schwartz, Andrew Colin Adey, Cho li Lee, Joseph Brian Hiatt, Jacob Otto Kitzman, Akash Kumar
  • Publication number: 20220097043
    Abstract: Devices, systems and apparatuses for the discretization and manipulation of sample volumes are provided. Related methods are also provided.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 31, 2022
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Daniel T. Chiu, Thomas Schneider, Jason E. Kreutz
  • Publication number: 20220082566
    Abstract: The present disclosure provides encoded chromophoric polymer particles that are capable of, for example, optical and/or biomolecular encoding of analytes. The present disclosure also provides suspensions comprising a plurality of encoded chromophoric polymer particles. The present disclosure also provides methods of using the encoded chromophoric polymer particles and systems for performing multiplex analysis with encoded chromophoric polymer particles.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 17, 2022
    Applicant: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. Chiu, Changfeng Wu, Jiangbo Yu