Abstract: Processes for increasing an octane value of a gasoline component by dehydrogenating a stream comprising C7 hydrocarbons and methylcyclohexane in a first dehydrogenation zone to form an intermediate dehydrogenation effluent, and then dehydrogenating the intermediate dehydrogenation effluent in a second dehydrogenation zone to form a C7 dehydrogenation effluent. The C7 dehydrogenation effluent has an increased olefins content compared to an olefins content of the intermediate dehydrogenation effluent. The first dehydrogenation zone is operated under conditions to convert methylcyclohexane to toluene and minimize cracking reactions. The intermediate dehydrogenation effluent may be heated before being passed to the second dehydrogenation zone.
Type:
Grant
Filed:
June 27, 2019
Date of Patent:
July 20, 2021
Assignee:
UOP LLC
Inventors:
Michael W. Penninger, Mark P. Lapinski, Gregory R. Werba, David S. Lafyatis
Abstract: A process and apparatus for reducing pressure of a flue gas stream including passing a pressurized flue gas stream to a vessel and through a bed of particulates in the vessel to reduce the pressure of the flue gas stream. The flue gas passes from the vessel at a lower pressure than at which it entered. The bed of particulates is disposed in the vessel between the outlet end of the inlet conduit and the inlet end of the outlet conduit. If deposits develop in the bed of particulates, the particulates can be replaced with fresh particulates to avoid excessive pressure drop. Data may be received from a stream in fluid communication with the foregoing process and apparatus.
Type:
Grant
Filed:
July 24, 2018
Date of Patent:
June 22, 2021
Assignee:
UOP LLC
Inventors:
Sujay R. Krishnamurthy, Paolo Palmas, Thomas W. Lorsbach
Abstract: A family of crystalline aluminosilicate zeolites has been synthesized that is a layered pentasil zeolite. These zeolites are represented by the empirical formula: Mmn+Rrp+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium or strontium, R can be a mixture of organoammonium cations and E is a framework element such as gallium, iron, boron, or indium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes. The diffraction patterns can be characterized by the following table: 2? d(?) I/Io 7.92-7.99 11.04-11.31 m 8.79-8.88 ?9.94-11.09 m 20.28-20.56 4.31-4.35 w 23.10-23.18 3.83-3.84 vs 23.86-24.05 3.69-3.72 m 29.90-30.05 2.97-2.98 w 45.02-45.17 2.00-2.
Abstract: Apparatuses and processes for producing at least one lubricant base oil and at least one hydrocarbon fuel range product. A deasphalted oil and a VGO stream and passed to a first hydroprocessing zone. After the first hydroprocessing zone, the hydrocarbon fuel range product may be recovered. After recovering the hydrocarbon fuel range product, the unconverted material may be separated into one or more lubricant base oil streams, and a recycle stream. The lubricant base oil streams may be upgraded, while the recycle stream may be hydroprocessed in a second hydroprocessing zone. The effluents can be combined to allow for efficient separation and recovery of the desired products.
Abstract: An integrated process for maximizing recovery of aromatics is provided. The process comprises passing at least a portion of a xylene column bottoms stream to a heavy aromatics column to provide a heavy aromatics column bottoms stream comprising C9+ aromatics and a heavy aromatics column overhead stream. The heavy aromatics column bottoms stream is passed to a second stage hydrocracking reactor of a two-stage hydrocracking reactor. In the second stage hydrocracking reactor, the heavy aromatics column bottoms stream is hydrocracked in the presence of a hydrocracking catalyst and hydrogen to provide a hydrocracked effluent stream.
Abstract: A process of treating a natural gas stream is provided comprising sending natural gas stream through a first adsorbent bed to remove water and heavy hydrocarbons (C8+) to produce a partially treated gas stream in which the first adsorbent bed is regenerated by a temperature swing adsorption process and then sending the partially treated gas stream through a second adsorption bed to remove carbon dioxide and lighter hydrocarbons (C7?) to produce a purified natural gas stream wherein said second adsorption bed is regenerated by a temperature pressure swing adsorption process.
Type:
Grant
Filed:
April 23, 2019
Date of Patent:
June 15, 2021
Assignee:
UOP LLC
Inventors:
Shain-Jer Doong, Mark M. Davis, Bhargav C. Sharma
Abstract: A process is provided for making a polymer comprising providing a mixture of at least one furandicarboxylic acid, at least one diol, and at least one C2-C3 dicarboxlic acid, ester derivatives of C2-C3 dicarboxylic acid, hydroxy fatty acid or ester derivative of a hydroxy fatty acid; adding a catalyst and processing said mixture at reaction conditions until a polymer product is produced. The polymer consists of random units based upon the starting materials that are used.
Type:
Grant
Filed:
September 28, 2019
Date of Patent:
June 15, 2021
Assignee:
UOP LLC
Inventors:
Erin Marie Broderick, Francis Stephen Lupton, Hayim Abrevaya
Abstract: A multistage membrane system and a process for treating a gas stream is provided in which the multistage membrane system comprises at least two membrane units wherein a first stage membrane unit comprises a polymeric membrane and a second membrane unit comprises a microporous zeolitic inorganic membrane or a combination of a microporous zeolitic inorganic membrane and a polymeric membrane.
Type:
Grant
Filed:
June 14, 2018
Date of Patent:
June 15, 2021
Assignee:
UOP LLC
Inventors:
Chunqing Liu, Simon E. Albo, David W. Greer, Xueliang Dong, Mark M. Davis
Abstract: FAU type binderless zeolitic adsorbents and methods for making the FAU type binderless adsorbents are described. The binderless zeolitic adsorbent comprises a first FAU type zeolite having a silica to alumina molar ratio below 3.0; a binder-converted FAU type zeolite having a silica to alumina molar ratio of from about 2.5 to about 6.0, wherein the binder-converted FAU type zeolite may be 5-50% of the binderless zeolitic adsorbent; and cationic exchangeable sites within the binderless zeolitic adsorbent. The FAU type binderless adsorbents may be used for xylene separation and purification in selective adsorptive separation processes using binderless zeolitic adsorbents.
Abstract: Processes incorporating a common organic chloride decomposition reactor and chloride treater to be used by both the C4 and C5-6 isomerization reaction zones are described. A portion of the C4 isomerization reaction zone off gas is routed to the C4 HCl absorber, which provides about 85% of the HCl requirement for the C4 isomerization reaction zone. A small amount of the C5-6 isomerization reaction zone off gas is mixed with the C4 isomerization reaction zone off gas portion going to the C4 HCl absorber.
Abstract: A stripper off gas stream from a low pressure hydroprocessing unit may be routed to a hydrogen recovery unit to recover hydrogen. The stripper off gas stream may be scrubbed of acid gases and then compressed to hydrogen recovery pressure before it is subjected to hydrogen recovery such as in a pressure swing adsorption unit to recover high purity hydrogen.
Abstract: A highly active quaternary mixed transition metal oxide material has been developed. The material may be sulfided to generate metal sulfides which are used as a catalyst in a conversion process such as hydroprocessing. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract: A hydroprocessing catalyst or catalyst precursor has been developed. The catalyst is a transition metal molybdotungstate material or metal sulfides derived therefrom. The hydroprocessing using the transition metal molybdotungstate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
Abstract: A plant or refinery may include equipment such as condensers, regenerators, distillation columns, rotating equipment, compressors, pumps, turbines, or the like. Different operating methods may impact deterioration in equipment condition, thereby prolonging equipment life, extending production operating time, or providing other benefits. Mechanical or digital sensors may be used for monitoring equipment to determine whether problems are developing. For example, sensors may be used in conjunction with one or more system components to perform invariant mapping, monitor system operating characteristics, and/or predict pressure, volume, surges, reactor loop fouling, gas quality, or the like. An operating condition (e.g., of one or more pieces of equipment in the plant or refinery) may be adjusted to prolong equipment life or avoid equipment failure.
Abstract: A new family of highly charged crystalline microporous metallophosphate molecular sieves has been synthesized. These metallophosphates are represented by the empirical formula of: Rp+rA+mM2+xEyPOz where A is an alkali metal cation, R is at least one quaternary organoammonium cation, M is a divalent metal such as zinc and E is a trivalent framework element such as aluminum or gallium. This family of high charge density metallophosphate materials are among the first metalloalumino(gallo)phosphate-type molecular sieves to be stabilized by combinations of alkali and quaternary organoammonium cations, enabling unique compositions. This family of high charge density metallophosphate molecular sieves has catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
Type:
Grant
Filed:
October 7, 2019
Date of Patent:
June 15, 2021
Assignee:
UOP LLC
Inventors:
Gregory J. Lewis, Jaime G. Moscoso, Lisa M. Knight, Seungwan Seo, Christopher P. Nicholas, Junghwan Lee, Suk Bong Hong
Abstract: The subject process enhances catalytic activity for demetallization and desulfurization of a residue feed stream by splitting a recycle hydrogen stream and feeding each of the split hydrogen streams to the first and second stages of demetallation and desulfurization, respectively, with interstage separation. The recycle hydrogen stream may first undergo scrubbing to remove acid gases and compression before recycle. The recycle hydrogen stream is taken from a first hot vapor stream from the first hydrotreating unit and a second hot vapor stream from the second hydrotreating unit.
Abstract: The present invention relates to dual extract flush for feeds for xylene extraction processes. More specifically, the present invention relates to dual extract flush for feeds for simulated moving bed extraction processes. It decouples line flush in and line flush out, providing a means for optimizing each flush independently. This scheme will allow for minimizing each bedline and flushing each according to its own bedline volume, which will minimize any additional non-ideal compositions added to the chambers or downstream fractionation.
Type:
Grant
Filed:
July 18, 2019
Date of Patent:
June 8, 2021
Assignee:
UOP LLC
Inventors:
Anton N. Mlinar, Gregory A. Ernst, R. Jason L. Noe
Abstract: A process for recovery of C5+ hydrocarbons from a stripper gaseous hydroprocessed stream by contacting it with a stripper liquid stream. The stripper liquid stream absorbs C5+ hydrocarbons predominantly over other hydrocarbons thereby increasing C5+ yield and enabling the stripper gaseous stream to meet hydrocarbon limits. The rich absorbent stream may be sent to recovery with the stripper liquid from whence it came.
Abstract: Discovered is a daughter circuit board for direct connection to another mother circuit board. The daughter circuit board has an edge electrode for conductive connection to a surface pad on the mother board. An opening in the daughter circuit board can be aligned with the surface pad on the mother circuit board. The opening can contain solder which when reflowed can establish a bond between the daughter circuit board and the surface pad on the mother circuit board.
Abstract: A petrochemical plant or refinery may include equipment such as pumps, compressors, valves, exchangers, columns, adsorbers, or the like. Some petrochemical plants or refineries may include one or more sensors configured to collect operation information of the equipment in the plant or refinery. A faulty condition of a process of the petrochemical plant may be diagnosed based on the operation of the plant equipment. A diagnostic system, which may receive operation information from the one or more sensors, may include a detection platform, an analysis platform, a visualization platform, and/or an alert platform.
Type:
Grant
Filed:
January 18, 2019
Date of Patent:
June 1, 2021
Assignee:
UOP LLC
Inventors:
Christophe Romatier, Ian G. Horn, Paul Kowalczyk, Zak Alzein, David Rondeau