Patents Assigned to UVTech Systems
  • Patent number: 8658937
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Process by-products are removed via an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion zone, resulting in an increase in the number of usable die on a wafer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: February 25, 2014
    Assignee: UVTech Systems, Inc.
    Inventors: Kenneth J. Harte, Ronald P. Millman, Jr., Victoria M. Chaplick, David J. Elliott, Eugene O. Degenkolb, Murray L. Tardif
  • Patent number: 8415587
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and fiber-optic system to direct laser radiation onto a rotating substrate supported by a chuck. A laser beam is transmitted into a bundle of optical fibers, and the fibers accurately and precisely direct the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 9, 2013
    Assignee: UVTech Systems, Inc.
    Inventors: Ronald P. Millman, Jr., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott
  • Patent number: 8410394
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 2, 2013
    Assignee: UVTech Systems, Inc.
    Inventors: Ronald P. Millman, Jr., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott, Murray L. Tardif, Eugene O. Degenkolb
  • Patent number: 8183500
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 22, 2012
    Assignee: UVTech Systems, Inc.
    Inventors: Kenneth J. Harte, Ronald P. Millman, Jr., Victoria M. Chaplick
  • Publication number: 20110185971
    Abstract: The disclosed apparatus and method provides substrate impurity doping wherein a laser rapidly scans a substrate while simultaneously a uniform laminar flow of reactive gas is injected, the interaction of the laser radiation and the dopant results in a uniform diffusion of the dopant species in all planes (X,Y,Z) of the substrate. Laser energy density, wavelength, and pulse geometry are adjustable, in a simple system for volume manufacturing, to provide depth and dose control of the dopant. The system optics can be focused to form a high resolution laser beam to directly write the doping area pattern geometry. Alternatively the laser beam can be optically expanded to form a large diameter beam for large area diffusion of the dopant through a patterned mask.
    Type: Application
    Filed: November 30, 2010
    Publication date: August 4, 2011
    Applicant: UVTech Systems, Inc.
    Inventors: David J. Elliott, Kenneth J. Harte, Ronald P. Millman, JR., Victoria M. Chaplick, Eugene O. Degenkolb
  • Publication number: 20110168672
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Process by-products are removed via an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion zone, resulting in an increase in the number of usable die on a wafer.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 14, 2011
    Applicant: UVTech Systems, Inc.
    Inventors: Kenneth J. Harte, Ronald P. Millman, JR., Victoria M. Chaplick, David J. Elliott, Eugene O. Degenkolb, Murray L. Tardif
  • Publication number: 20110147350
    Abstract: A modular wafer edge processing apparatus is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The modular apparatus can be integrated into wafer tracks, cluster tools, and other volume manufacturing systems. The edge processing apparatus of this invention includes a laser that can either be contained inside the module, or mounted externally to feed multiple modules and thereby reduce system cost. The apparatus contains a beam delivery subsystem to direct a beam of radiation onto the edges of a rotating substrate supported by a chuck. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 23, 2011
    Applicant: UVTech Systems Inc.
    Inventors: Ronald P. Millman, JR., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott, Eugene O. Degenkolb
  • Publication number: 20110147352
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 23, 2011
    Applicant: UVTech Systems Inc.
    Inventors: Kenneth J. Harte, Ronald P. Millman, JR., Victoria M. Chaplick
  • Publication number: 20110139759
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and fiber-optic system to direct laser radiation onto a rotating substrate supported by a chuck. A laser beam is transmitted into a bundle of optical fibers, and the fibers accurately and precisely direct the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 16, 2011
    Applicant: UVTech Systems Inc.
    Inventors: Ronald P. Millman, JR., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott
  • Publication number: 20110061679
    Abstract: A method for removing ion implanted photoresist from a surface of a substrate is provided. The method may include introducing a gas to a reaction chamber containing the substrate; illuminating the ion implanted photoresist with radiation from a laser in the presence of the gas; and scanning the radiation across the surface in the presence of the gas to photoreactively remove the ion implanted photoresist from the surface.
    Type: Application
    Filed: June 21, 2010
    Publication date: March 17, 2011
    Applicant: UVTech Systems, Inc.
    Inventors: David J. Elliott, Ronald P. Millman, JR., Victoria M. Chaplick, Murray Tardif, Krista Aiello, Kenneth J. Harte
  • Patent number: 7514015
    Abstract: A system for removing photoresist from semiconductor wafers is disclosed. The system utilizes a solid-state laser having wavelengths in the near-visible and visible portions of the electromagnetic spectrum to remove photoresist without requiring hazardous gases or wet solutions. In addition, the system does not damage the substrate being cleaned, nor leave a carbon residue requiring further processing to remove. The system uses photon energy, oxygen, water vapor and ozone to interact with contaminants on a surface, forming a gas reaction zone (GRZ). The GRZ reacts and completely removes the photoresist or other unwanted contamination.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: April 7, 2009
    Assignee: UVTech Systems
    Inventors: David J. Elliott, Ronald P. Millman, Jr., Murray Tardif, Krista Aiello
  • Publication number: 20070224768
    Abstract: A method and apparatus delivers pulsed laser energy to a damage-sensitive surface. The pulse scanning method and apparatus allow for the deposition of a total dose of laser radiation that could not be attained by any conventional means without damaging the substrate being exposed. Using a solid-state diode pumped YAG laser and an enclosure with a gas ambient, laser pulses are scanned across a substrate according to one of several programmed approaches. Pulses are deposited that are non-adjacent in time, or non-adjacent in space, or both; conventional methods have the pulses adjacent in both time and space. Using the various approaches of the invention, the degree of spatial and temporal adjacency can be precisely controlled to permit significant laser radiation doses without causing any substrate damage.
    Type: Application
    Filed: February 23, 2007
    Publication date: September 27, 2007
    Applicant: UVTech Systems, Inc.
    Inventors: Victoria Chaplick, Kenneth Harte, Ronald Millman, David Elliott
  • Patent number: 7270724
    Abstract: A scanning plasma reactor for exciting reactant gases at a substrate surface including a beam forming module, a gas injection module, a reaction chamber with a window and a vacuum chuck, a gas exhaust module. Radiation from the beam forming module and the reactant gas create an excited plasma zone. The excited plasma zone is translated across the substrate like a windshield wiper blade, or the substrate is conveyed under a fixed gas reaction zone.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: September 18, 2007
    Assignee: UVTech Systems, Inc.
    Inventors: David J. Elliott, Kenneth J. Harte, Larry E. Shephard
  • Publication number: 20060231204
    Abstract: An automated system for use in semiconductor manufacturing may include a semiconductor reaction chamber, a solid-state laser mounted above a top surface of the semiconductor reaction chamber, and a gas delivery module connected to the semiconductor reaction chamber. The system may include a gas exhaust pump connected to the semiconductor reaction chamber, a temperature sensor connected to the semiconductor reaction chamber, and a housing surrounding the reaction chamber, the solid-state laser, the gas delivery module, the gas exhaust pump, and the temperature sensor, where the housing is portable.
    Type: Application
    Filed: June 26, 2006
    Publication date: October 19, 2006
    Applicant: UVTech Systems, Inc.
    Inventors: David Elliott, Ronald Millman, Murray Tardif, Krista Aiello
  • Publication number: 20050279380
    Abstract: A system for removing photoresist from semiconductor wafers is disclosed. The system utilizes a solid-state laser having wavelengths in the near-visible and visible portions of the electromagnetic spectrum to remove photoresist without requiring hazardous gases or wet solutions. In addition, the system does not damage the substrate being cleaned, nor leave a carbon residue requiring further processing to remove. The system uses photon energy, oxygen, water vapor and ozone to interact with contaminants on a surface, forming a gas reaction zone (GRZ). The GRZ reacts and completely removes the photoresist or other unwanted contamination.
    Type: Application
    Filed: November 29, 2004
    Publication date: December 22, 2005
    Applicant: UVTech Systems, Inc.
    Inventors: David Elliott, Ronald Millman, Murray Tardif, Krista Aiello
  • Publication number: 20050279453
    Abstract: A system for removing photoresist from semiconductor wafers is disclosed. The system utilizes a solid-state laser having wavelengths in the near-visible and visible portions of the electromagnetic spectrum to remove photoresist without requiring hazardous gases or wet solutions. In addition, the system does not damage the substrate being cleaned, nor leave a carbon residue requiring further processing to remove. The system uses photon energy, oxygen, water vapor and ozone to interact with contaminants on a surface, forming a gas reaction zone (GRZ). The GRZ reacts and completely removes the photoresist or other unwanted contamination.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 22, 2005
    Applicant: UVTech Systems, Inc.
    Inventors: David Elliott, Ronald Millman, Murray Tardif, Krista Aiello
  • Patent number: 6773683
    Abstract: A photocatalytic reactor system consisting of a photonic energy source to remove undesirable contaminants from an effluent stream. The device includes a photonic energy source, a beam delivery system, and a reaction chamber into which the photonic energy is transmitted. The contaminated effluent flows through the reaction chamber where the photonic energy reacts with it to reduce contaminant emissions.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: August 10, 2004
    Assignee: UVTech Systems, Inc.
    Inventors: David J. Elliott, Allan R. Thompson, George D. Whitten, Jonathan C. Camp, Mark T. Krajewski
  • Patent number: 5814156
    Abstract: Foreign material on a surface of a substrate is processed to form a non-solid by-product by providing a gaseous reactant in the vicinity of the foreign material and delivering a beam of radiation to aid the gaseous reactant to react with the foreign material to form the non-solid by-product.In another aspect, radiation for cleaning a surface of a substrate is provided by a laser configured to deliver an original beam of ultraviolet radiation, and optics (e.g., a pair of orthogonal cylindrical mirrors) for shaping the beam to have a cross-section in the form of a line having a width smaller than any dimension of a cross-section of the original beam and a length at least ten times larger than any dimension of the original beam.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: September 29, 1998
    Assignee: UVTech Systems Inc.
    Inventors: David J. Elliott, Richard F. Hollman
  • Patent number: 5669979
    Abstract: A method of cleaning a substrate surface, the cleaning being done photoreactively without damaging the surface. A laser beam of UV radiation is delivered at an acute angle to the surface of the substrate, the beam striking the surface at a long and narrow reaction region. The beam and the substrate are moved relative to one another to cause the beam to sweep the surface. While the beam is sweeping the surface, a flow of a reactant gas is provided at the reaction region so that the gas is excited by the UV laser beam. The acute angle of the beam is of a value such that foreign material is removed without essentially damaging the surface of the substrate or leaving a residue that would inhibit further processing of the substrate surface.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: September 23, 1997
    Assignee: UVTech Systems, Inc.
    Inventors: David J. Elliott, Richard F. Hollman, Francis M. Yans, Daniel K. Singer