Patents Assigned to Vacuumschmelze GmbH
  • Publication number: 20190061033
    Abstract: A process for producing an amorphous ductile brazing foil is provided. According to one example embodiment, the method includes providing a molten mass, and rapidly solidifying the molten mass on a moving cooling surface with a cooling speed of more than approximately 105° C./sec to produce an amorphous ductile brazing foil. A process for joining two or more parts is also provided. The process includes inserting a brazing foil between two or more parts to be joined, wherein the parts to be joined have a higher melting temperature than that the brazing foil to form a solder joint and the brazing foil comprises an amorphous, ductile Ni-based brazing foil; heating the solder joint to a temperature above the liquidus temperature of the brazing foil to form a heated solder joint; and cooling the heated solder joint, thereby forming a brazed joint between the parts to be joined.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Applicant: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Thomas HARTMANN, Dieter NUETZEL
  • Patent number: 10213834
    Abstract: A method of fabricating an article for magnetic heat exchange, is provided which comprises plastically deforming a composite body comprising a binder having a glass transition temperature TG and a powder comprising a magnetocalorically active phase or elements in amounts suitable to produce a magnetocalorically active phase such that at least one dimension of the composite body' changes in length by at least 10%.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: February 26, 2019
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Hugo Abdiel Vieyra Villegas, Matthias Katter, Barcza Alexander
  • Patent number: 10149416
    Abstract: A shielding film for an apparatus with a device for wireless charging is provided which comprises several stacked layers. The layers each have several strips of a nanocrystalline soft magnetic alloy arranged on an adhesive layer, the nanocrystalline soft magnetic alloy having a round hysteresis loop. The strips of adjacent layers are offset with respect to one another.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 4, 2018
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Christian Polak, Matthias Schmidt
  • Patent number: 10137517
    Abstract: An amorphous, ductile brazing foil is provided. According to one example embodiment, the composition consists essentially of NirestCraBbPcSid with 2 atomic percent?a?30 atomic percent; 0.5 atomic percent?b?14 atomic percent; 2 atomic percent?c?20 atomic percent; 0 atomic percent?d?14 atomic percent; incidental impurities?0.5 atomic percent; rest Ni, where c>b>c/15 and 10 atomic percent?b+c+d?25 atomic percent.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: November 27, 2018
    Assignee: VACUUMSCHMELZE GMBH & CO KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Patent number: 10117337
    Abstract: Electrically isolating an electrical or electronic assembly having a carrier and one or more electrical or electronic components mechanically and electrically connected with the carrier, includes coating the carrier or at least one of the components or both entirely or partially with powder. The powder includes powder particles of electrically isolating material that have an average particle diameter of less than 1000 micrometers.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: October 30, 2018
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventor: Harald Hundt
  • Patent number: 9978487
    Abstract: An article for magnetic heat exchange includes a functionally-graded monolithic sintered working component including La1-aRa(Fe1-x-yTyMx)13HzCb with a NaZn13-type structure. M is one or more of the elements from the group consisting of Si and Al, T is one or more of the elements from the group consisting of Mn, Co, Ni, Ti, V and Cr and R is one or more of the elements from the group consisting of Ce, Nd, Y and Pr. A content of the one or more elements T and R, if present, a C content, if present, and a content of M varies in a working direction of the working component and provides a functionally-graded Curie temperature. The functionally-graded Curie temperature monotonically decreases or monotonically increases in the working direction of the working component.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 22, 2018
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Matthias Katter, Alexander Barcza, Volker Zellmann
  • Patent number: 9941040
    Abstract: A soft magnetic core is provided, in which permeabilities that occur at least two different locations of the core are different. A method for producing a soft magnetic core that has different permeabilities at at least two different locations is also provided.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 10, 2018
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Jivan Kapoor, Christian Polak
  • Patent number: 9895748
    Abstract: Method of manufacturing a reactive sintered magnetic article, a composite article comprising a mantle and at least one core and a laminate article comprising two or more composite articles are provided which each comprise (La1?aMa) (Fe1?b?c?Tb?Y?c)13?dXe, wherein 0?a?0.9, 0?b?0.2, 0.05?c?0.2, ?1?d?+1, 0?e?3.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 20, 2018
    Assignee: VACUUMSCHMELZE & GMBH & CO. KG
    Inventor: Matthias Katter
  • Patent number: 9864941
    Abstract: Magnetic core made of soft magnetic material with a data medium attached to, mounted on or integrated in the magnetic core, with data in machine-readable form being stored on the data medium, the data representing at least one magnetic parameter of the magnetic core or its corresponding electrical parameter, measured at at least two different temperatures.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 9, 2018
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Harald Hundt, Markus Wehring, Nina Friedenberger, Achim Kipper
  • Patent number: 9846181
    Abstract: A current sensor arrangement for measuring an effective primary current in a primary conductor having a magnetic core for magnetic coupling of the primary conductor to a secondary conductor and a controlled voltage source connected to the secondary conductor and configured to apply a voltage with adjustable polarity to the secondary conductor so that a secondary current passes through the secondary conductor. A measurement and control unit is coupled to the secondary conductor and configured to generate a measuring signal that represents the secondary current, to continuously detect the occurrence of magnetic saturation in the core, and to reverse the polarity of the voltage upon the detection thereof in order to reverse magnetization of the core. Furthermore, the measurement and control unit is configured to evaluate a spectrum of the measuring signal and determine a frequency of a current passing through the primary conductor based on the spectrum.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: December 19, 2017
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Steffen Boettcher, Holger Schwenk
  • Patent number: 9812237
    Abstract: Soft magnetic core, in which permeabilities that occur at least two different locations of the core are different.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: November 7, 2017
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Jivan Kapoor, Christian Polak
  • Patent number: 9804203
    Abstract: The current sensor arrangement according to the compensation principle has a primary conductor, designed to generate a primary magnetic field dependent on a current to be measured flowing through it, a first secondary winding, designed to generate a first secondary magnetic field dependent on a first compensation current flowing through said winding, a second secondary winding designed to generate a second secondary magnetic field dependent on a second compensation current flowing through said winding, a magnetic field sensor designed to generate a measurement signal that represents a magnetic field detected by it; a magnetic core of soft magnetic material designed and arranged to magnetically interconnect a primary conductor, a first seconding winding, a second secondary winding, and a magnetic field sensor; a first evaluation circuit, downstream from the magnetic field sensor and upstream from the first secondary winding, and a second evaluation circuit, upstream from the second secondary winding.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 31, 2017
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventor: Friedrich Lenhard
  • Patent number: 9773595
    Abstract: An alloy is provided which consists of Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz and up to 1 at % impurities, M being one or more of the elements Mo, Ta and Zr, T being one or more of the elements V, Mn, Cr, Co and Ni, Z being one or more of the elements C, P and Ge, 0 at %?a<1.5 at %, 0 at %?b<2 at %, 0 at %?(b+c)<2 at %, 0 at %?d<5 at %, 10 at %<x<18 at %, 5 at %<y<11 at % and 0 at %?z<2 at %. The alloy is configured in tape form and has a nanocrystalline structure in which at least 50 vol % of the grains have an average size of less than 100 nm, a hysteresis loop with a central linear region, a remanence ratio Jr/Js of <0.1 and a coercive field strength Hc to anisotropic field strength Ha ratio of <10%.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 26, 2017
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Giselher Herzer, Christian Polak, Viktoria Budinsky
  • Patent number: 9773591
    Abstract: An article for magnetic heat exchange comprising a magnetocalorically active phase with a NaZn13-type crystal structure is provided by hydrogenating a bulk precursor article. The bulk precursor article is heated from a temperature of less than 50° C. to at least 300° C. in an inert atmosphere and hydrogen gas only introduced when a temperature of at least 300° C. is reached. The bulk precursor article is maintained in a hydrogen containing atmosphere at a temperature in the range 300° C. to 700° C. for a selected duration of time, and then cooled to a temperature of less than 50° C.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: September 26, 2017
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Matthias Katter, Volker Zellmann
  • Patent number: 9757810
    Abstract: Disclosed is an amorphous, ductile brazing foil with a composition consisting essentially of NirestCraBbPcSid with 2 atomic percent?a?30 atomic percent; 0.5 atomic percent?b?14 atomic percent; 2 atomic percent?c?20 atomic percent; 0 atomic percent?d?14 atomic percent; incidental impurities?0.5 atomic percent; rest Ni, where c>b>c/15 and 10 atomic percent?b+c+d?25 atomic percent. Also disclosed is amorphous, ductile Ni-based brazing foil having a composition consisting essentially of NirestCraBbPcSidCeXfYg wherein a, b, c, d, e, f, and g are numbers such that 2 atomic percent?a?30 atomic percent; 0.5 atomic percent?b?14 atomic percent; 2 atomic percent?c?20 atomic percent; 0 atomic percent?d?14 atomic percent; 0 atomic percent?e?5 atomic percent; 0 atomic percent?f?5 atomic percent; 0 atomic percent?g?20 atomic percent; wherein incidental impurities are present, if at all, in amounts?0.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: September 12, 2017
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Patent number: 9700937
    Abstract: A device for the production of a metallic strip using a rapid solidification technology is specified, which device includes a movable heat sink with an external surface onto which a melt is poured and on which the melt solidifies to produce the strip, and which device includes a rolling device which can be pressed against the external surface of the movable heat sink while the heat sink is in motion.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: July 11, 2017
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventor: Robert Schulz
  • Patent number: 9666340
    Abstract: A composite article (1; 10; 40) comprises a plurality of inclusions (5) of a magnetocalorically active material embedded in a matrix (4) of a magnetocalorically passive material. The inclusions (5) and the matrix (4) have a microstructure characteristic of a compacted powder.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: May 30, 2017
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Georg Werner Reppel, Matthias Katter
  • Patent number: 9634219
    Abstract: A method for producing a thermoelectric object for a thermoelectric conversion device is provided. A starting material which contains elements in the ratio of a half-Heusler alloy is melted and then cast form an ingot. The ingot is heat-treated for 12 to 24 hours at a temperature of 1000° C. to 1200° C. The homogenised ingot is crushed and ground to provide a powder. The powder is cold-pressed and sintered for 0.5 to 24 hours at a temperature of 1000° C. to 1500° C.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: April 25, 2017
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Joachim Gerster, Alberto Bracchi, Michael Muller
  • Patent number: 9534157
    Abstract: A composition for an adhesive material, comprising at least one epoxide resin mixture and a hardening accelerator, in which the epoxide resin mixture has 25 to 80% by weight of a first epoxide resin—whereby the first epoxide resin is a bifunctional aliphatic, cycloaliphatic or aromatic epoxide resin—and 12.5 to 40% by weight of a second epoxide resin—whereby the second epoxide resin is a polyfunctional aliphatic or aromatic epoxide resin—and in which the hardening accelerator is an imidazole derivative, which is not soluble in the epoxide resin mixture at temperatures of below 50° C.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: January 3, 2017
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Lothar Zapf, Markus Brunner
  • Patent number: 9524816
    Abstract: A process of fabricating a monolithic working component for magnetic heat exchange is disclosed. The process includes mixing two or more portions comprising amounts of La, Fe, Si and at least one of T and R suitable to produce a La1-aRa(Fe1-x-yTySix)13Hz phase, wherein T is at least one element from the group consisting of Mn, Co, Ni and Cr and R is at least one element from the group consisting of Ce, Nd, Y and Pr. The amount of T, R, and Si is selected for each of the two or more portions to provide the two or more portions with differing Curie temperatures and, preferably, a density, d, within a range of ±5% of an average density, dav, of a total number of portions. The process includes heat treating a single monolithic green body formed from two or more precursor powder mixtures to produce a single monolithic working component.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: December 20, 2016
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Matthias Katter, Volker Zellmann, Alexander Barcza