Patents Assigned to Varian Medical Systems Particle Therapy GmbH
  • Patent number: 12208286
    Abstract: Techniques for closed-loop feedback beam control in particle therapy delivery system can include receiving treatment plan beam parameters, receiving a determined output beam current of a present spot, generating an adjusted source beam current set point based on the treatment plan beam parameters and the determined output beam current of the present spot, and adjusting an output beam current of the present spot based on the adjusted source beam current.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: January 28, 2025
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Jay Steele, Manuel Schedler
  • Patent number: 12186586
    Abstract: A computer implemented method of determining a resultant treatment plan for a proton radiation therapy system based on given dose volume constraints, wherein the resultant treatment plan is optimized for treatment time comprises accessing the dose volume constraints and range information, wherein the range information indicates acceptable deviations from the dose volume constraints. Based on the proton radiation therapy system, the method further comprises accessing machine configuration information comprising a plurality of machine parameters that define a maximum resolution achievable in irradiating a patient. Further, the method comprises iteratively adjusting the plurality of machine parameters to values which decrease the maximum resolution and simulating a plurality of candidate treatment plans to generate a plurality of treatment plan results, wherein each treatment plan result comprises: a respective treatment time and a respective plan quality.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: January 7, 2025
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems Particle Therapy GmbH & CO KG, Siemens Healthineers International AG
    Inventors: Isabel Huth, Christel Smith, Timo Koponen, Perttu Niemela, Markus Bach, Reynald Vanderstraeten
  • Patent number: 12186592
    Abstract: Dose analysis radiotherapy systems and methods for determine delivered radiotherapy dose, dose rate, irradiation time and position information and planned radiotherapy dose, dose rate, irradiation time and position information. The dose analysis systems and methods further compare the as delivered dose, dose rate, irradiation time and position information to the planned dose, dose rate, irradiation time and position information to generate a graphical representation of one or more of the delivered dose, dose rate, irradiation time and position information versus planned dose, dose rate, irradiation time and position information.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: January 7, 2025
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Sylvie Spiessens, Michael Folkerts, Eric Abel, Isabel Huth, Tina Pfeiler, Pierre Lansonneur
  • Patent number: 12186587
    Abstract: A method of planning radiation treatment for a patient includes identifying a region of interest of the patient to be treated with radiation and determining a simulated treatment plan for the region of interest based on a statistical analysis between one or more metrics of the identified region of interest and a previously determined predictive dynamics database that includes information regarding the one or more metrics for corresponding regions of interest for a population of patients. The method further includes characterizing the simulated treatment plan with a FLASH Index that compares an ideal FLASH radiation treatment plan to the simulated treatment plan.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: January 7, 2025
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG, SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Pierre Lansonneur, Miriam Krieger, Michael Folkerts, Anthony Magliari, Daren Sawkey
  • Patent number: 12193139
    Abstract: A remote diagnostic monitoring of operating states for physical components of a particle accelerator system includes generating, by at least one processor, a component hierarchy corresponding to a physical arrangement of one or more physical components of a particle emitting system and including corresponding operating indicators of operating states of the physical components, identifying, by the at least one processor, a faulted physical component among the physical components, identifying, by the at least one processor, one or more fault path components among the physical components, the fault path components corresponding to a portion of the physical arrangement associated with the faulted physical component, and modifying, by the at least one processor, the operating indicators of the fault path components to fault state indicators.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: January 7, 2025
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Brian Forbes, Joel Rumley, Imran Tariq, Eric Grossimon, Brian Morse
  • Patent number: 12083356
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. A quantitative time-dependent model-based charged particle pencil beam scanning optimization is then implemented for FLASH therapy.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: September 10, 2024
    Assignees: SIEMENS HEALTHINEERS INTERNATIONAL AG, VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG, VARIAN MEDICAL SYSTEMS INC
    Inventors: Michael Matthew Folkerts, Jessica Perez, Christel Smith, Eric Abel, Anthony Magliari, Reynald Vanderstraeten, Timo Kalevi Koponen, Renate Parry, Alexander Katsis, Rajiv Dua, Michiko Alcanzare, Perttu Niemela, Matti Ropo
  • Patent number: 12076584
    Abstract: Presented systems and methods enable efficient and effective robust radiation treatment planning and treatment, including analysis of dose rate robustness. In one embodiment, a method comprising accessing treatment plan information, accessing information corresponding to an uncertainty associated with implementation of the radiation treatment plan, and generating a histogram, wherein the histogram conveys a characteristic of the treatment plan including an impact of the uncertainty on the characteristic. The histogram can be a dose rate volume histogram and can be utilized to test a degree of robustness of a treatment plan (e.g., including allowance for uncertainty scenarios, etc.). The uncertainty can be associated with potential variation associated with tolerances (e.g., radiation system/machine performance tolerance, patient characteristic tolerances, etc.) and set up issues (e.g., variation in initial system/machine set up, variation patient setup/position, etc.).
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: September 3, 2024
    Assignees: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO, KG, SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Tina Pfeiler, Reynald Vanderstraeten, Michiko Rossi, Isabel Huth, Viljo Petaja
  • Patent number: 12070627
    Abstract: Embodiments of the present invention describe systems and methods for providing proton therapy treatment using a beam line where the ESS is reduced or eliminated. For multi-room configurations, a beam line is included having quadrupole and steerer magnets to align and focus a particle beam extracted by an accelerator and guided by a bend section. A degrader is disposed between the bend section and the treatment room, and the energy analyzing functionality is performed by the gantry.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: August 27, 2024
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Manuel Benna, Vladimir Anferov, Andrii Rusanov
  • Patent number: 11992703
    Abstract: A method used for planning radiation treatment accessing information that includes calculated doses and calculated dose rates for sub-volumes in a treatment target, and also accessing information that includes values of a measure of the sub-volumes as a function of the calculated doses and the calculated dose rates. A graphical user interface includes a rendering that is based on the calculated doses, the calculated doses rates, and the values of the measure.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: May 28, 2024
    Assignees: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG, VARIAN MEDICAL SYSTEMS, INC., SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Pierre Lansonneur, Perttu Niemela, Viljo Petaja, Simon Busold, Michiko Rossi, Matti Sakari Ropo, Michael Folkerts, Jessica Perez, Christel Smith, Adam Harrington, Eric Abel, Lauri Halko
  • Patent number: 11944845
    Abstract: An asymmetric dual-mode ionization chamber measurement system can include a first high-voltage plate, a second high-voltage plate and a readout plate. The first high-voltage plate can be disposed from the readout plate by a first active volume. The second high-voltage plate can be disposed from the readout plate by a second active volume. A high-voltage potential can be coupled to the first high-voltage plate during a first mode, and to the second high-voltage plate during a second mode. Ion pairs generated by a radiation stream passing through the first active volume during the first mode and the second active volume during the second mode can be measured at the readout plate to determine a radiation rate of the ionizing radiation. The asymmetric dual-mode ionization chamber measurement system can advantageously measure different radiation streams that have significantly different ranges of radiation rates flux.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: April 2, 2024
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Manuel Schedler, Simon Busold, Birger Schumacher
  • Patent number: 11938342
    Abstract: In one embodiment, a method includes receiving treatment information relating to a treatment plan for proton- or ion-beam therapy intended to irradiate a target tissue; receiving machine-limitation information relating to one or more limitations of one or more machines involved in the proton- or ion-beam therapy; determining a time-optimized beam current for a proton or ion beam based on the treatment information and the machine-limitation information, wherein the time-optimized beam current minimizes the time required to deliver a required quantity of monitor units to one of a plurality of spots, wherein each of the plurality of spots is a particular area of the target tissue; and delivering the time-optimized beam current to the particular area.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: March 26, 2024
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Holger Goebel, Isabel Huth
  • Publication number: 20240075314
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 7, 2024
    Applicants: Varian Medical Systems, Inc., Siemens Healthineers International AG, Varian Medical Systems Particle Therapy GmbH
    Inventors: Christel SMITH, Timo KOPONEN, Reynald VANDERSTRAETEN, Anthony MAGLIARI, Eric ABEL, Jessica PEREZ, Michael FOLKERTS, Deepak KHUNTIA
  • Publication number: 20240017092
    Abstract: At least one example embodiment relates to a method of manufacturing an applicator. The method includes providing a shaft. The shaft has a first end and a second end opposite the first end. The method further includes providing a cap, providing a base portion, and forming an applicator. The forming the applicator includes connecting the cap to the first end of the shaft and connecting the base portion to the second end of the shaft.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 18, 2024
    Applicant: Varian Medical Systems Particle Therapy GmbH
    Inventors: Judith JAENSCH, Ruth DESELAERS, Christian GERBER, Josef RUPPRECHT, Thomas KNOEFEL, Michael OTT
  • Patent number: 11865361
    Abstract: Embodiments of the present invention provide methods and systems for proton therapy planning that maximize the dose rate for different target sizes for FLASH therapy treatment are disclosed herein according to embodiments of the present invention. According to embodiments, non-standard scanning patterns can be generated, for example, using a TPS optimizer, to maximize dose rate and the overall FLASH effect for specific volumes at risk. The novel scanning patterns can include scanning subfields of a field that are scanned independently or spiral-shaped patterns, for example. In general, spot locations and beam paths between spots are optimized to substantially achieve a desired dose rate in defined regions of the patient's body for FLASH therapy treatment.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: January 9, 2024
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG, SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Jessica Perez, Eric Abel, Michael Folkerts, Christel Smith, Adam Harrington, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Michiko Rossi
  • Patent number: 11865364
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: January 9, 2024
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems Particle Therapy GmbH, Siemens Healthineers International AG
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 11738213
    Abstract: A beam transport assembly conveys a particle beam from a particle source to an irradiation nozzle, which rotates about a swivel axis at the horizontal input of the nozzle. A support can move horizontally in a plane perpendicular to the swivel axis. The beam transport assembly can change a path length of the particle beam so as to follow a vertical location of the swivel axis of the irradiation nozzle with respect to the support. A controller can coordinate the path length change of the particle beam, rotation of the irradiation nozzle about the swivel axis, and/or horizontal motion of the support to provide irradiation of a supported object from various angles in the plane perpendicular to the swivel axis while maintaining the irradiation nozzle at a constant distance from the supported object.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 29, 2023
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Jan H. Timmer, Juergen Schultheiss
  • Patent number: 11703552
    Abstract: A magnetic field concentrating or guiding device can include one or more coils, and one or more foil, tape and/or bulk superconductor structures disposed in one or more predetermined positions with relation to the coils. The one or more superconductor structures can form one or more magnetic field carrying regions. During operation, current passing through the one or more coils can generate one or more magnetic fields that are compressed or guided in the magnetic field carrying regions.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: July 18, 2023
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Arno Godeke, Michael Schillo
  • Patent number: 11590364
    Abstract: A system for treating a patient during radiation therapy is disclosed. The system includes a shell, a plurality of material inserts disposed in the shell, where each material insert of the plurality of material inserts respectively shapes a distribution of a dose delivered to the patient by a respective beam of a plurality of beams emitted from a nozzle of a radiation treatment system, and a scaffold component disposed in the shell that holds the plurality material inserts in place relative to the patient such that each material insert lies on a path of at least one of the beams.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 28, 2023
    Assignees: Varian Medical Systems International AG, Varian Medical Systems Particle Therapy GmbH & Co. KG, Varian Medical Systems, Inc.
    Inventors: Eric Abel, Corey Zankowski, Jessica Perez, Anthony Magliari, Christel Smith, Michael Folkerts, Bill Hansen, Reynald Vanderstraeten, Timo Koponen
  • Patent number: 11570880
    Abstract: An isochronous cyclotron including one or more coils and a plurality of pairs of bulk superconductor sectors. The one or more coils can be configured to generate a magnetic field in the beam chamber having a magnetic flux density that increases radially from the central axis of the beam chamber, and is orientated substantially perpendicular to the median acceleration plane of the beam chamber. Each pair of bulk superconductor sectors can be disposed on opposite sides of the median acceleration plane. The plurality of pairs of bulk superconductor sectors can be configured to guide or concentrate the magnetic field to provide an axial focusing component of the magnetic field.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: January 31, 2023
    Assignee: Varian Medical Systems Particle Therapy GmbH
    Inventors: Joachim Bock, Arno Godeke
  • Patent number: 11554271
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 17, 2023
    Assignees: Varian Medical Systems, Inc, Varian Medical Systems Particle Therapy GMBH & Co. KG, Varian Medical Systems International AG
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia