Patents Assigned to Varian Medical Systems Particle Therapy GmbH
  • Patent number: 11944845
    Abstract: An asymmetric dual-mode ionization chamber measurement system can include a first high-voltage plate, a second high-voltage plate and a readout plate. The first high-voltage plate can be disposed from the readout plate by a first active volume. The second high-voltage plate can be disposed from the readout plate by a second active volume. A high-voltage potential can be coupled to the first high-voltage plate during a first mode, and to the second high-voltage plate during a second mode. Ion pairs generated by a radiation stream passing through the first active volume during the first mode and the second active volume during the second mode can be measured at the readout plate to determine a radiation rate of the ionizing radiation. The asymmetric dual-mode ionization chamber measurement system can advantageously measure different radiation streams that have significantly different ranges of radiation rates flux.
    Type: Grant
    Filed: December 23, 2022
    Date of Patent: April 2, 2024
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Manuel Schedler, Simon Busold, Birger Schumacher
  • Patent number: 11938342
    Abstract: In one embodiment, a method includes receiving treatment information relating to a treatment plan for proton- or ion-beam therapy intended to irradiate a target tissue; receiving machine-limitation information relating to one or more limitations of one or more machines involved in the proton- or ion-beam therapy; determining a time-optimized beam current for a proton or ion beam based on the treatment information and the machine-limitation information, wherein the time-optimized beam current minimizes the time required to deliver a required quantity of monitor units to one of a plurality of spots, wherein each of the plurality of spots is a particular area of the target tissue; and delivering the time-optimized beam current to the particular area.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: March 26, 2024
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Holger Goebel, Isabel Huth
  • Publication number: 20240075314
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 7, 2024
    Applicants: Varian Medical Systems, Inc., Siemens Healthineers International AG, Varian Medical Systems Particle Therapy GmbH
    Inventors: Christel SMITH, Timo KOPONEN, Reynald VANDERSTRAETEN, Anthony MAGLIARI, Eric ABEL, Jessica PEREZ, Michael FOLKERTS, Deepak KHUNTIA
  • Publication number: 20240017092
    Abstract: At least one example embodiment relates to a method of manufacturing an applicator. The method includes providing a shaft. The shaft has a first end and a second end opposite the first end. The method further includes providing a cap, providing a base portion, and forming an applicator. The forming the applicator includes connecting the cap to the first end of the shaft and connecting the base portion to the second end of the shaft.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 18, 2024
    Applicant: Varian Medical Systems Particle Therapy GmbH
    Inventors: Judith JAENSCH, Ruth DESELAERS, Christian GERBER, Josef RUPPRECHT, Thomas KNOEFEL, Michael OTT
  • Patent number: 11865361
    Abstract: Embodiments of the present invention provide methods and systems for proton therapy planning that maximize the dose rate for different target sizes for FLASH therapy treatment are disclosed herein according to embodiments of the present invention. According to embodiments, non-standard scanning patterns can be generated, for example, using a TPS optimizer, to maximize dose rate and the overall FLASH effect for specific volumes at risk. The novel scanning patterns can include scanning subfields of a field that are scanned independently or spiral-shaped patterns, for example. In general, spot locations and beam paths between spots are optimized to substantially achieve a desired dose rate in defined regions of the patient's body for FLASH therapy treatment.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: January 9, 2024
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG, SIEMENS HEALTHINEERS INTERNATIONAL AG
    Inventors: Jessica Perez, Eric Abel, Michael Folkerts, Christel Smith, Adam Harrington, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Michiko Rossi
  • Patent number: 11865364
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: January 9, 2024
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems Particle Therapy GmbH, Siemens Healthineers International AG
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 11738213
    Abstract: A beam transport assembly conveys a particle beam from a particle source to an irradiation nozzle, which rotates about a swivel axis at the horizontal input of the nozzle. A support can move horizontally in a plane perpendicular to the swivel axis. The beam transport assembly can change a path length of the particle beam so as to follow a vertical location of the swivel axis of the irradiation nozzle with respect to the support. A controller can coordinate the path length change of the particle beam, rotation of the irradiation nozzle about the swivel axis, and/or horizontal motion of the support to provide irradiation of a supported object from various angles in the plane perpendicular to the swivel axis while maintaining the irradiation nozzle at a constant distance from the supported object.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 29, 2023
    Assignees: VARIAN MEDICAL SYSTEMS, INC., VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Jan H. Timmer, Juergen Schultheiss
  • Patent number: 11703552
    Abstract: A magnetic field concentrating or guiding device can include one or more coils, and one or more foil, tape and/or bulk superconductor structures disposed in one or more predetermined positions with relation to the coils. The one or more superconductor structures can form one or more magnetic field carrying regions. During operation, current passing through the one or more coils can generate one or more magnetic fields that are compressed or guided in the magnetic field carrying regions.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: July 18, 2023
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Arno Godeke, Michael Schillo
  • Patent number: 11590364
    Abstract: A system for treating a patient during radiation therapy is disclosed. The system includes a shell, a plurality of material inserts disposed in the shell, where each material insert of the plurality of material inserts respectively shapes a distribution of a dose delivered to the patient by a respective beam of a plurality of beams emitted from a nozzle of a radiation treatment system, and a scaffold component disposed in the shell that holds the plurality material inserts in place relative to the patient such that each material insert lies on a path of at least one of the beams.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 28, 2023
    Assignees: Varian Medical Systems International AG, Varian Medical Systems Particle Therapy GmbH & Co. KG, Varian Medical Systems, Inc.
    Inventors: Eric Abel, Corey Zankowski, Jessica Perez, Anthony Magliari, Christel Smith, Michael Folkerts, Bill Hansen, Reynald Vanderstraeten, Timo Koponen
  • Patent number: 11570880
    Abstract: An isochronous cyclotron including one or more coils and a plurality of pairs of bulk superconductor sectors. The one or more coils can be configured to generate a magnetic field in the beam chamber having a magnetic flux density that increases radially from the central axis of the beam chamber, and is orientated substantially perpendicular to the median acceleration plane of the beam chamber. Each pair of bulk superconductor sectors can be disposed on opposite sides of the median acceleration plane. The plurality of pairs of bulk superconductor sectors can be configured to guide or concentrate the magnetic field to provide an axial focusing component of the magnetic field.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: January 31, 2023
    Assignee: Varian Medical Systems Particle Therapy GmbH
    Inventors: Joachim Bock, Arno Godeke
  • Patent number: 11554271
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 17, 2023
    Assignees: Varian Medical Systems, Inc, Varian Medical Systems Particle Therapy GMBH & Co. KG, Varian Medical Systems International AG
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 11534626
    Abstract: An asymmetric dual-mode ionization chamber measurement system can include a first high-voltage plate, a second high-voltage plate and a readout plate. The first high-voltage plate can be disposed from the readout plate by a first active volume. The second high-voltage plate can be disposed from the readout plate by a second active volume. A high-voltage potential can be coupled to the first high-voltage plate during a first mode, and to the second high-voltage plate during a second mode. Ion pairs generated by a radiation stream passing through the first active volume during the first mode and the second active volume during the second mode can be measured at the readout plate to determine a radiation rate of the ionizing radiation. The asymmetric dual-mode ionization chamber measurement system can advantageously measure different radiation streams that have significantly different ranges of radiation rates flux.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: December 27, 2022
    Assignee: Varian Medical Systems Particle Therapy GmbH & Co. KG
    Inventors: Manuel Schedler, Simon Busold, Birger Schumacher
  • Publication number: 20220152420
    Abstract: In one embodiment, a method includes receiving treatment information relating to a treatment plan for proton- or ion-beam therapy intended to irradiate a target tissue; receiving machine-limitation information relating to one or more limitations of one or more machines involved in the proton- or ion-beam therapy; determining a time-optimized beam current for a proton or ion beam based on the treatment information and the machine-limitation information, wherein the time-optimized beam current minimizes the time required to deliver a required quantity of monitor units to one of a plurality of spots, wherein each of the plurality of spots is a particular area of the target tissue; and delivering the time-optimized beam current to the particular area.
    Type: Application
    Filed: February 2, 2022
    Publication date: May 19, 2022
    Applicant: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventors: Holger GOEBEL, Isabel HUTH
  • Patent number: 11280850
    Abstract: A magnetic field concentrating or guiding device can include one or more coils, and one or more foil, tape and/or bulk superconductor structures disposed in one or more predetermined positions with relation to the coils. The one or more superconductor structures can form one or more magnetic field carrying regions. During operation, current passing through the one or more coils can generate one or more magnetic fields that are compressed or guided in the magnetic field carrying regions.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: March 22, 2022
    Assignee: Varian Medical Systems Particle Therapy GmbH
    Inventors: Arno Godeke, Michael Schillo
  • Patent number: 11235171
    Abstract: Systems, devices, and methods for non-Gaussian energy distribution modeling for treatment planning algorithms used in particle radiation therapy.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: February 1, 2022
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO. KG
    Inventor: Joerg Wulff
  • Patent number: 11103727
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. A quantitative time-dependent model-based charged particle pencil beam scanning optimization is then implemented for FLASH therapy.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: August 31, 2021
    Assignees: Varian Medical Systems International AG, Varian Medical Systems Particle Therapy GmbH, Varian Medical Systems, Inc.
    Inventors: Michael Matthew Folkerts, Jessica Perez, Christel Smith, Eric Abel, Anthony Magliari, Reynald Vanderstraeten, Timo Kalevi Koponen, Renate Parry, Alexander Katsis, Rajiv Dua, Michiko Alcanzare, Perttu Niemela, Matti Ropo
  • Patent number: 11090508
    Abstract: Embodiments of the present invention provide an integrated solution to radiotherapy treatment planning that enables accurate recording and accumulation of physical parameters as input (e.g., dose, dose rate, irradiation time per voxel, etc.). User-defined functions are evaluated to correlate the input parameters with 4D biological outcomes. The resulting biological parameters can be visualized as a biological outcome map to evaluate decisions, support decisions, and optimize decisions regarding the parameters of the radiotherapy treatment plan, for example, for supporting clinical trials and related clinical research.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: August 17, 2021
    Assignees: Varian medical Systems Particle Therapy GmbH & Co. KG, Varian Medical Systems International AG, Varian Medical Systems, Inc.
    Inventors: Michael Matthew Folkerts, Jessica Perez, Christel Smith, Eric Abel, Anthony Magliari, Reynald Vanderstraeten, Timo Kalevi Koponen, Renate Parry, Alexander Katsis, Rajiv Dua, Michiko Alcanzare, Perttu Niemela, Matti Ropo
  • Patent number: 11076776
    Abstract: A method for measuring skin thickness. The method includes at a first 3D point on an outer surface of a patient, exposing the first point to near infrared (NIR) energy from an NIR source. The method includes measuring reflected energy emanating near the first 3D point, or beam incident point. The method includes determining a pattern of the reflected energy based on a distance from a center of the reflected energy, wherein the center is approximated by the first 3D point. The method includes determining a skin thickness measurement based on the pattern.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: August 3, 2021
    Assignees: Varian Medical Systems Particle Therapy GmbH, Varian Medical Systems, Inc.
    Inventors: John R. Adler, Jr., Ralf Bruder, Floris Ernst, Achim Schweikard
  • Patent number: 10918886
    Abstract: A computing system comprising a central processing unit (CPU), and memory coupled to the CPU and having stored therein instructions that, when executed by the computing system, cause the computing system to execute operations to generate a radiation treatment plan. The operations include accessing a minimum prescribed dose to be delivered into and across the target, determining a number of beams and directions of the beams, and determining a beam energy for each of the beams, wherein the number of beams, the directions of the beams, and the beam energy for each of the beams are determined such that the entire target receives the minimum prescribed dose. The operations further include prescribing a dose rate and optimizing dose rate constraints for FLASH therapy, and displaying a dose rate map of the FLASH therapy.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: February 16, 2021
    Assignees: Varian Medical Systems, Inc., Varian Medical Systems International AG, Varian Medical Systems Particle Therapy GMBH
    Inventors: Christel Smith, Timo Koponen, Reynald Vanderstraeten, Anthony Magliari, Eric Abel, Jessica Perez, Michael Folkerts, Deepak Khuntia
  • Patent number: 10912953
    Abstract: Embodiments of the present invention disclose methods and systems for producing an adaptive pencil beam having an adjustable lateral beam size and Bragg-peak width. According to one disclosed embodiment, an apparatus for producing an adaptive pencil beam is disclosed. The apparatus includes a set of momentum band expanders configured to widen a momentum spread of a pencil beam, where a momentum band expander is selected from the set of momentum band expanders to receive the pencil beam, and a slit at dispersive focus of two dipole magnets to adjust a width of a Bragg-peak of the pencil beam. According to another disclosed embodiment, a method for producing an adaptive pencil beam with an adjustable lateral beam is disclosed. The method includes selecting a scatter foil, or setting of a defocusing/focusing magnet, and adjusting a lateral size of the pencil beam.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 9, 2021
    Assignee: Varian Medical Systems Particle Therapy GMBH
    Inventor: Joerg Wulff