Abstract: A light-emitting device epitaxially-grown on a GaAs substrate which contains an active region composed of AlxGa1-xAs alloy or of related superlattices of this materials system is disclosed. This active region either includes tensile-strained GaP-rich insertions aimed to increase the forbidden gap of the active region targeting the bright red, orange, yellow, or green spectral ranges, or is confined by regions with GaP-rich insertions aimed to increase the barrier height for electrons in the conduction band preventing the leakage of the nonequilibrium carriers outside of the light-generation region.
Type:
Application
Filed:
June 4, 2012
Publication date:
April 18, 2013
Applicant:
VI Systems GmbH
Inventors:
Nikolay Ledentsov, James Lott, Vitaly Shchukin
Abstract: The optoelectronic assembly for high speed signal transmission based on surface-emitting/receiving components is disclosed. The assembly contains a mounting plate with a top side used for the mounting of the components; single or multiple electrooptical or optoelectronic transducer components with the optical ports of the transducer on the top side and a bottom side used for assembly; a micro-mirror component; an optical transmission path wherein the transmission axis is oriented substantially parallel to the surface of the transducer components and to the top side of the mounting plate; and a transducer component mounted with the bottom side on the mounting plate near a micro-mirror component mounted above the transducer component in such a configuration that the optical transmission path to or from the transducer is reflected at the mirror surface such that the transducer is optically coupled to this same transmission path.
Abstract: A device contains at least one wavelength-tunable multilayer interference reflector controlled by an applied voltage and at least one cavity. The stopband edge wavelength of the wavelength-tunable multilayer interference reflector is preferably electrooptically tuned using the quantum confined Stark effect in the vicinity of the cavity mode (or a composite cavity mode), resulting in a modulated transmittance of the multilayer interference reflector. A light-emitting medium is preferably introduced in the cavity or in one of the cavities permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply forward or reverse bias and may operate as a vertical cavity surface-emitting light emitter or modulator or as an edge-emitting light emitter or modulator.
Abstract: A device contains at least one wavelength-tunable multilayer interference reflector controlled by an applied voltage and at least one cavity. The stopband edge wavelength of the wavelength-tunable multilayer interference reflector is preferably electrooptically tuned using the quantum confined Stark effect in the vicinity of the cavity mode (or a composite cavity mode), resulting in a modulated transmittance of the multilayer interference reflector. A light-emitting medium is preferably introduced in the cavity or in one of the cavities permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply forward or reverse bias and may operate as a vertical cavity surface emitting light-emitter or modulator or as an edge-emitting light emitter or modulator.
Abstract: Semiconductor electrooptic medium shows behavior different from a medium based on quantum confined Stark Effect. A preferred embodiment has a type-II heterojunction, selected such, that, in zero electric field, an electron and a hole are localized on the opposite sides of the heterojunction having a negligible or very small overlap of the wave functions, and correspondingly, a zero or a very small exciton oscillator strength. Applying an electric field results in squeezing of the wave functions to the heterojunction which strongly increases the overlap of the electron and the hole wave functions, resulting in a strong increase of the exciton oscillator strength. Another embodiment of the novel electrooptic medium includes a heterojunction between a layer and a superlattice, wherein an electron and a hole in the zero electric field are localized on the opposite sides of the heterojunction, the latter being effectively a type-II heterojunction.