Abstract: The present invention relates to a module for a motor vehicle for emitting at least one light beam with a cut-off profile along an optical axis. The module includes first and second optical collectors adapted to collect light emitted by respective first and second light sources, and redirects the light toward a focal region. At least one of the collectors extends in the direction of the focal region in order to reflect some of the light emitted by the other collector so as to define the cut-off profile.
Abstract: This invention discloses methods and apparatus for providing a variable optic insert into an ophthalmic lens. A liquid crystal layer may be used to provide a variable optic function and in some examples, an alignment layer for the liquid crystal layer may be patterned in a cycloidally dependent manner. The patterning may allow for a polarization dependent lens in some examples. An energy source is capable of powering the variable optic insert included within the ophthalmic lens. In some examples, an ophthalmic lens is cast-molded from a silicone hydrogel. The various ophthalmic lens entities may include electroactive liquid crystal layers to electrically control optical characteristics.
Type:
Grant
Filed:
May 26, 2016
Date of Patent:
October 10, 2017
Assignee:
Johnson & Johnson Vision Care, Inc.
Inventors:
Luciano De Sio, Frederick A. Flitsch, Praveen Pandojirao-S, Randall Braxton Pugh, Svetlan Serak, Nelson V. Tabirian, Adam Toner, Olena Uskova, James Daniel Riall
Abstract: A processor with an accumulator. An event is selected to produce one or more selected events. A reset signal to the accumulator is generated responsive to the selected event. Responsive to the reset signal, the accumulator is reset to zero or another initial value while avoiding breaking pipelined execution of the processor.
Type:
Grant
Filed:
January 21, 2016
Date of Patent:
October 10, 2017
Assignee:
Mobileye Vision Technologies Ltd.
Inventors:
Gil Israel Dogon, Yosi Arbeli, Yosef Kreinin
Abstract: An optical measurement system includes an optical sensor assembly for measuring an object located beneath the optical sensor assembly. A deployment mechanism is pivotally connected relative to the optical sensor assembly that moves a secondary measurement aid, such as a touch sensor, between a deployed position and a retracted position. When in the retracted position, the secondary measurement aid does not inhibit movement of the optical sensor with respect to the object being measured.
Abstract: The invention is directed to a method for determining an eyeglass prescription for an eye, in particular through the use of a non-transitory computer readable medium.
Type:
Grant
Filed:
August 11, 2015
Date of Patent:
October 10, 2017
Assignees:
Carl Zeiss Vision International GmbH, Carl Zeiss Vision Inc.
Abstract: The present invention relates to a rear lighting and/or signaling device, notably for a motor vehicle, comprising a light source, a transmission surface and means for distributing at least a part of the light from the source on the transmission surface, the distribution means comprising a matrix of micromirrors that can each be driven according to at least two different inclination positions. Another source is present and a mode of operation allows the illumination of a part of the micromirrors by the source and another part by the source.
Abstract: Determining three-dimensional structure in a road environment using a system mountable in a host vehicle including a camera connectible to a processor. Multiple image frames are captured in the field of view of the camera. In the image frames, a line is selected below which the road is imaged. The line separates between upper images essentially excluding images of the road and lower images essentially including images of the road. One or more of the lower images is warped, according to a road homography to produce at least one warped lower image. The three-dimensional structure may be provided from motion of a matching feature within the upper images or from motion of a matching feature within at least one of the lower images and at least one warped lower image.
Abstract: Filter holder (10) having a tubular overall shape and made of an elastic material, an annular groove (40) being formed on the interior surface of the filter holder.
Abstract: A viewing aid includes a camera, a viewing surface within a field of view of the camera, a memory, a display, and software programmed to track a tracking element within the field of view. Viewing material is placed on the viewing surface. The camera, viewing surface, and material all remain substantially stationary. The camera captures and stores an initial image of the material in the memory. The software then tracks the location of a tracking element within the field of view then maps the location to a portion of the initial image in memory using an X-Y coordinate system, and/or identifies character elements of the material adjacent the tracking element then maps the character elements to corresponding character elements of the initial image in memory. An enhanced image is then displayed on the display corresponding to the mapped portion of the initial image.
Abstract: The invention proposes a device and a method which make it possible to manage the light fluxes emitted respectively by fixed and mobile parts of a light device for a motor vehicle. It is noteworthy that the management of the light fluxes takes into account the relative position between the different parts of the light device.
Abstract: A spectacle lens is disclosed. The disclosed lens provides a vision correcting area for the correction of a wearer's refractive error. The viewing correction area provides correction for non-conventional refractive error to provide at least a part of the wearer's vision correction. The lens has a prescription based on a wave front analysis of the wearer's eye and the lens can further be modified to fit within an eyeglass frame.
Abstract: A light-emitting device, notably a lighting and/or signaling device for a motor vehicle, including at least one first light source intended to emit a first modulated light beam coding information; at least one second light source intended to emit a second modulated light beam coding information; a control device adapted: to determine, on receiving information to be transmitted via the light-emitting device, if a first light beam intended to be emitted by the first source should be modulated to code the information to be transmitted and/or if a second beam intended to be emitted by the second source should be modulated to code the information to be transmitted, the determination depending on information relating to the local solar illumination; as a function of the determination, to modulate the first light beam and/or the energization second light beam to code the information to be transmitted.
Abstract: An optical element has a substrate body made from transparent plastic and a coating having multiple layers. The coating includes a hard lacquer layer adjoining the substrate. The coating has a diffusivity ensuring the absorption of water molecules passing through the coating in the substrate and the release of water molecules from the substrate through the coating from an air atmosphere on that side of the coating facing away from the substrate with a flow density which, proceeding from the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 23° C. and 50% relative humidity, brings the setting of the equilibrium state of the quantity of water molecules absorbed in the substrate in an air atmosphere at 40° C. and 95% relative humidity within an interval not more than 10 h longer than for setting this equilibrium under corresponding conditions with an identical uncoated substrate.
Type:
Grant
Filed:
May 6, 2014
Date of Patent:
October 3, 2017
Assignee:
Carl Zeiss Vision International GmbH
Inventors:
Norbert Hugenberg, Markus Haidl, Bernhard von Blanckenhagen, Lothar Holz, Stefan Kraus, Frank Macionczyk, Michael Krause, Erwin Green, Karl-Heinz Winter, Thomas Gloege, Silvia Faul, Anja Petereit, Bin Peng, Joerg Puetz, Patrick Kiefer, Adalbert Hanssen, Michael Krieger, Andreas Neuffer, Marc Stroisch
Abstract: A light module for a motor vehicle comprising: a light guide with an input face and at least two branches each extending from the input face according to a specific length and a specific section; at least one light source arranged at the input face of the light guide, the input face being adapted to couple light rays emitted by the light source in the light guide; wherein the two branches are contiguous over a part of their length from the input face to a determined point of separation, the two sections of the branches overlapping over a zone of intersection which is present from the input face to the determined point of separation. The two sections are substantially constant along the branches from the input face over a length greater than or equal to the length of the branches between the input face and the determined point of separation.
Abstract: A reticle unit equipped with an optical apparatus such as a riflescope includes: red and green light sources radiating red light and green light; a disc-like shaped reticle substrate that has a diffraction grating formed at substantially the center of a surface having substantially circular shape; and red and green mirror members converge light radiated from the red and green light sources, make incidence on the reticle substrate from corresponding side surface portions of the reticle substrate to illuminate the diffraction grating so as to emit first order diffracted light reflected and diffracted by the diffraction grating along a normal direction of the diffraction grating.
Abstract: An eyelid position sensor system for an ophthalmic lens comprising an electronic system is described herein. The eyelid position sensor system is part of an electronic system incorporated into the ophthalmic lens. The electronic system includes one or more batteries or other power sources, power management circuitry, one or more sensors, clock generation circuitry, control algorithms and circuitry, and lens driver circuitry. The eyelid position sensor system is utilized to determine eyelid position and use this information to control various aspects of the ophthalmic lens.
Type:
Grant
Filed:
February 28, 2013
Date of Patent:
October 3, 2017
Assignee:
Johnson & Johnson Vision Care, Inc.
Inventors:
Randall Braxton Pugh, Adam Toner, Daniel B. Otts
Abstract: The invention provides an improved rotationally stabilized contact lens design and method of designing such a lens which minimizes stabilization time of the lens while maximizing the lens on-eye comfort. The lens and the method of designing the lens utilizes and combines non-circularity and thickness differential aspects resulting in equivalent or minimized stabilization time, ease of insertion and manufacturability as well as maximum comfort that is improved over that of what either aspect can achieve independently.
Type:
Grant
Filed:
August 26, 2015
Date of Patent:
October 3, 2017
Assignee:
Johnson & Johnson Vision Care, Inc.
Inventors:
Pierre-Yves Gerligand, Philippe F. Jubin, Jason M. Tokarski
Abstract: Determining a barrier effect of a coating for a medium includes: providing a substrate having the coating on its surface, the substrate undergoing a volume change on contact with the medium; conditioning the substrate with the coating; removing the coating from a first part of the surface, leaving the coating on a second part, the first part having an extent in a first direction delimited by the coating remaining on the second; determining a height profile of the coating on the second part and the first part on a path in the first direction; exposing the remaining coating and the first part to the medium; determining a second height profile of the coating on the second part and the first part on the path in the first direction and/or determining a difference in height profile on the second and first part with respect to the height profile determined beforehand.
Abstract: A foldable roll-over protection structure is provided for use on a vehicle movable in a generally fore-and-aft direction. The foldable roll-over protection structure includes a frame comprising a base section and an upper section. The base section is connectable to the vehicle. The upper section is swingable relative to the base section between a forward position in which the upper section projects forwardly from the base section, a rearward position in which the upper section projects rearwardly from the base section, and an upright position positioned between the forward and rearward positions. A hinge assembly swingably interconnects the sections of the frame. The hinge assembly is configured to releasably secure the upper section in each of the positions of the upper section.