Patents Assigned to Wenger Manufacturing, Inc.
-
Publication number: 20220132869Abstract: Methods for the production of a variety of tortilla products involve initial extrusion of one or more grain(s) and/or legume(s) using a twin-screw extruder, followed by mixing the extrudate with water and other ingredients to form a tortilla dough. The dough is then subdivided and formed into a flat tortilla shape, followed by cooking. The grain(s) and/or legume(s) may be previously extruded as a part of a continuous process. High quality tortilla products may be produced using a wide variety of grain(s) and/or legume(s), including gluten-free ingredients.Type: ApplicationFiled: November 1, 2021Publication date: May 5, 2022Applicant: Wenger Manufacturing Inc.Inventors: Brian S. Plattner, Christopher Dohl
-
Patent number: 11254041Abstract: High Specific Mechanical Energy extruder screw assemblies (14, 88, 98) and complete extruders (10, 86, 96) are provided, which include wide-flight intermediate screw sections (104) having axial flight widths greater than the flight widths of the inlet and outlet screw sections (102, 106) on opposite sides of the intermediate sections (104). The intermediate sections (104) provide increased friction and shear serving to enhance the SMEs imparted to comestible food materials during processing thereof.Type: GrantFiled: December 11, 2019Date of Patent: February 22, 2022Assignee: Wenger Manufacturing Inc.Inventors: Marc L. Wenger, Philip B. Wiltz
-
Patent number: 11241026Abstract: Apparatus and methods for food production including a food preconditioner (228) operable to heat and partially pre-cook food ingredients, and a twin screw extruder (20) operable to further cook the preconditioned ingredients to create final food products. The extruder (20) includes a pair of hollow core extrusion screws (50, 52, 124, 126, 190) having elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) is also of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). The flighting (56, 132, 134, 194) also includes forward, reverse pitch sections (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to impart high levels of thermal energy into materials being processed in the extruders (20), without adding additional moisture.Type: GrantFiled: June 19, 2019Date of Patent: February 8, 2022Assignee: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20210337831Abstract: Apparatus and methods for food production including a food preconditioner (228) operable to heat and partially pre-cook food ingredients, and a twin screw extruder (20) operable to further cook the preconditioned ingredients to create final food products. The extruder (20) includes a pair of hollow core extrusion screws (50, 52, 124, 126, 190) having elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) is also of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). The fighting (56, 132, 134, 194) also includes forward, reverse pitch sections (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to impart high levels of thermal energy into materials being processed in the extruders (20), without adding additional moisture.Type: ApplicationFiled: July 14, 2021Publication date: November 4, 2021Applicant: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Patent number: 11039629Abstract: High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.Type: GrantFiled: April 24, 2019Date of Patent: June 22, 2021Assignee: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20210068424Abstract: Extrusion processes for the production of retort-stable feed products comprise forming a mixture of feed ingredients and subjecting the mixture to specific mechanical energy (SME) and specific thermal energy (STE) inputs to achieve low SME/STE ratios, followed by retorting of the extruded products. The extrusion system (20) includes a preconditioner (22), extruder (24), and a two-stage drying assembly (26/28). The extruded products may be retorted directly from the extruder or after partial or complete drying thereof.Type: ApplicationFiled: November 18, 2020Publication date: March 11, 2021Applicant: Wenger Manufacturing Inc.Inventors: Galen J. Rokey, LaVon Wenger, Lafe Bailey
-
Patent number: 10893688Abstract: High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.Type: GrantFiled: June 19, 2019Date of Patent: January 19, 2021Assignee: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20200268020Abstract: High meat content extruded pet foods and methods of preparation thereof, preferably include initial treatment of a high moisture meat slurry to create a dewatered meat fraction and a liquid fraction. The liquid fraction is directed to an extruder, along with typical dry pet food ingredients, in order to create an extruded intermediate. This intermediate is then mixed with the dewatered meat fraction, and the mixture is then extruded and dried to create a final pet food. The methods may be carried out using separate processing systems each including a mixer, an extruder, and a drying assembly, in order to maximize production rates.Type: ApplicationFiled: February 27, 2019Publication date: August 27, 2020Applicant: Wenger Manufacturing Inc.Inventors: Galen J. Rokey, LaVon Wenger
-
Patent number: 10736340Abstract: High meat content extruded pet foods and methods of preparation thereof, preferably include initial treatment of a high moisture meat slurry to create a dewatered meat fraction and a liquid fraction. The liquid fraction is directed to an extruder, along with typical dry pet food ingredients, in order to create an extruded intermediate. This intermediate is then mixed with the dewatered meat fraction, and the mixture is then extruded and dried to create a final pet food. The methods may be carried out using separate processing systems each including a mixer, an extruder, and a drying assembly, in order to maximize production rates.Type: GrantFiled: February 27, 2019Date of Patent: August 11, 2020Assignee: Wenger Manufacturing Inc.Inventors: Galen J. Rokey, LaVon Wenger
-
Publication number: 20200120955Abstract: High meat content extruded pet feeds and methods of preparation thereof, make use of relatively high meat contents which include quantities of previously dewatered meat. In an embodiment, the total meat content of the feeds consists essentially of dewatered emulsified poultry meat or other meat sources commonly used in the pet food industry. In the methods, mixtures containing starch, fat, and meat, the latter including dewatered meat, are passed through an extruder followed by staged drying. The extruder may be of twin screw design having hollow core screws permitting introduction of steam or other heat exchange media into the screws.Type: ApplicationFiled: December 17, 2019Publication date: April 23, 2020Applicant: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20200120970Abstract: Extrusion processes for the production of retort-stable feed products comprise forming a mixture of feed ingredients and subjecting the mixture to specific mechanical energy (SME) and specific thermal energy (STE) inputs to achieve low SME/STE ratios, followed by retorting of the extruded products. The extrusion system (20) includes a preconditioner (22), extruder (24), and a two-stage drying assembly (26/28). The extruded products may be retorted directly from the extruder or after partial or complete drying thereof.Type: ApplicationFiled: May 8, 2019Publication date: April 23, 2020Applicant: Wenger Manufacturing Inc.Inventors: Galen J. Rokey, LaVon Wenger, Lafe Bailey
-
Patent number: 10624369Abstract: A meat dewatering assembly (10) includes a support frame (12), a twin screw dewatering unit (14), a drive assembly (16) coupled with the unit (14), and a perforated housing (60). The unit (14) has a pair of tapered, non-parallel, intermeshed, helically flighted screws (52, 54) presenting nip clearances (59) between the fighting (55). The drive assembly (16) serves to counter-rotate the screws (52, 54). In use, emulsified meat is passed into the housing (60) during counter-rotation of the screws (52, 54), in order to compress the meat within the clearances (59) and thereby express water from the meat. Adjustment collars (38) permit selective size alteration of the nip clearances (59).Type: GrantFiled: August 20, 2019Date of Patent: April 21, 2020Assignee: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier
-
Patent number: 10624382Abstract: High Specific Mechanical Energy extruder screw assemblies (14, 88, 98) and complete extruders (10, 86, 96) are provided, which include wide-flight intermediate screw sections (104) having axial flight widths greater than the flight widths of the inlet and outlet screw sections (102, 106) on opposite sides of the intermediate sections (104). The intermediate sections (104) provide increased friction and shear serving to enhance the SMEs imparted to comestible food materials during processing thereof.Type: GrantFiled: May 16, 2018Date of Patent: April 21, 2020Assignee: Wenger Manufacturing Inc.Inventors: Marc L. Wenger, Philip B. Wiltz
-
Publication number: 20200113222Abstract: High Specific Mechanical Energy extruder screw assemblies (14, 88, 98) and complete extruders (10, 86, 96) are provided, which include wide-flight intermediate screw sections (104) having axial flight widths greater than the flight widths of the inlet and outlet screw sections (102, 106) on opposite sides of the intermediate sections (104). The intermediate sections (104) provide increased friction and shear serving to enhance the SMEs imparted to comestible food materials during processing thereof.Type: ApplicationFiled: December 11, 2019Publication date: April 16, 2020Applicant: Wenger Manufacturing Inc.Inventors: Marc L. Wenger, Philip B. Wiltz
-
Patent number: 10555547Abstract: A meat dewatering assembly (10) includes a support frame (12), a twin screw dewatering unit (14), a drive assembly (16) coupled with the unit (14), and a perforated housing (60). The unit (14) has a pair of tapered, non-parallel, intermeshed, helically flighted screws (52, 54) presenting nip clearances (59) between the fighting (55). The drive assembly (16) serves to counter-rotate the screws (52, 54). In use, emulsified meat is passed into the housing (60) during counter-rotation of the screws (52, 54), in order to compress the meat within the clearances (59) and thereby express water from the meat. Adjustment collars (38) permit selective size alteration of the nip clearances (59).Type: GrantFiled: December 13, 2017Date of Patent: February 11, 2020Assignee: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier
-
Publication number: 20190364929Abstract: A meat dewatering assembly (10) includes a support frame (12), a twin screw dewatering unit (14), a drive assembly (16) coupled with the unit (14), and a perforated housing (60). The unit (14) has a pair of tapered, non-parallel, intermeshed, helically flighted screws (52, 54) presenting nip clearances (59) between the fighting (55). The drive assembly (16) serves to counter-rotate the screws (52, 54). In use, emulsified meat is passed into the housing (60) during counter-rotation of the screws (52, 54), in order to compress the meat within the clearances (59) and thereby express water from the meat. Adjustment collars (38) permit selective size alteration of the nip clearances (59).Type: ApplicationFiled: August 20, 2019Publication date: December 5, 2019Applicant: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier
-
Patent number: 10434483Abstract: High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.Type: GrantFiled: September 8, 2017Date of Patent: October 8, 2019Assignee: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20190299179Abstract: Apparatus and methods for food production including a food preconditioner (228) operable to heat and partially pre-cook food ingredients, and a twin screw extruder (20) operable to further cook the preconditioned ingredients to create final food products. The extruder (20) includes a pair of hollow core extrusion screws (50, 52, 124, 126, 190) having elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) is also of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). The flighting (56, 132, 134, 194) also includes forward, reverse pitch sections (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to impart high levels of thermal energy into materials being processed in the extruders (20), without adding additional moisture.Type: ApplicationFiled: June 19, 2019Publication date: October 3, 2019Applicant: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20190299178Abstract: High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.Type: ApplicationFiled: June 19, 2019Publication date: October 3, 2019Applicant: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz
-
Publication number: 20190247813Abstract: High thermal transfer, hollow core extrusion screws (50, 52, 124, 126, 190) include elongated hollow core shafts (54, 128, 130, 192) equipped with helical fighting (56, 132, 134, 194) along the lengths thereof. The fighting (132, 134, 194) may also be of hollow construction which communicates with the hollow core shafts (54, 128, 130, 192). Structure (88, 90) is provided for delivery of heat exchange media (e.g., steam) into the hollow core shafts (54, 128, 130, 192) and the hollow fighting (132, 134, 194). The fighting (56, 132, 134, 194) also includes a forward, reverse pitch section (64, 162, 216). The extrusion screws (50, 52, 124, 126, 190) are designed to be used as complemental pairs as a part of twin screw processing devices (20), and are designed to impart high levels of thermal energy into materials being processed in the devices (20), without adding additional moisture.Type: ApplicationFiled: April 24, 2019Publication date: August 15, 2019Applicant: Wenger Manufacturing Inc.Inventors: LaVon Wenger, Allan C. Spellmeier, Philip B. Wiltz