Patents Assigned to Western Digital (Fremont), LLC
  • Patent number: 9940956
    Abstract: Aspects of the present disclosure provide a magnetic reader and methods for fabricating the same. The magnetic reader has a capping layer structure that can reduce or impede the corrosion and/or recession of a shield layer of the magnetic reader. In a particular embodiment, the capping layer structure includes a ruthenium (Ru) layer that is configured to impede oxygen interdiffusion between an IrMn antiferromagnetic layer and a Ta cap layer.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 10, 2018
    Assignee: Western Digital (Fremont), LLC
    Inventors: Rong R. Cao, Yung-Hung Wang, Lifan Chen, Haifeng Wang, Chih-Ching Hu
  • Patent number: 9934794
    Abstract: A magnetic apparatus has a media-facing surface (MFS), a pole, a write gap at the MFS, a trailing shield, coil(s) and a nonmagnetic refill material. The pole includes a pole tip proximate to the MFS. The trailing shield includes a pedestal and a recessed portion. The pedestal occupies a portion of the MFS. The recessed portion has a front surface at an acute angle from the MFS and is recessed from the MFS by a distance of not more than 0.8 micrometers. The write gap is between the pedestal and the pole tip. The coil(s) energize the pole and have at least one turn. The coil(s) are between the recessed portion of the trailing shield and the pole. The trailing shield is between the nonmagnetic refill material and the pole. A portion of the nonmagnetic refill material is between the recessed portion and the MFS.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: April 3, 2018
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Ran Lin, Ming Sun, El-Amine Salhi, Donghong Li, Yunfei Li, Ming Jiang
  • Patent number: 9934811
    Abstract: Systems and methods for controlling stray fields of a magnetic feature are provided. One such method can involve selecting a plurality of materials for a magnetic feature, selecting a plurality of additives, combining the plurality of materials for the magnetic feature and the plurality of additives in an electrolyte solution to form a combined solution, adding nitrogen to the combined solution, degassing the combined solution, depositing the combined solution as a thin film on a wafer using pulse plating, and lapping the thin film to form an edge of the magnetic feature. In several embodiments, the magnetic feature is a component of a magnetic transducer such as a writer pole, a reader shield, or a writer shield.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: April 3, 2018
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ming Sun, Jose A. Medina, Ming Jiang, Ming Zhao
  • Patent number: 9922672
    Abstract: A magnetic read apparatus has an air-bearing surface (ABS) and includes a read sensor and a rear magnetic bias structure. The read sensor includes first and second free layers, a spacer layer and a rear surface opposite to the ABS. The spacer layer is nonmagnetic and between the first and second free layers. The read sensor has a track width in a cross track direction parallel to the ABS. The rear magnetic bias structure magnetically biases the read sensor a stripe height direction perpendicular to the ABS. The read sensor is between the ABS and the rear magnetic bias structure. The rear magnetic bias structure has a width in the cross track direction and a length in the stripe height direction. The length is greater than the width. The width of the rear magnetic bias structure is substantially equal to the track width of the read sensor.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 20, 2018
    Assignee: Western Digital (Fremont), LLC
    Inventors: Daniele Mauri, Savas Gider, Hui Zhao, Ming Mao
  • Patent number: 9902023
    Abstract: Systems and devices for achieving high throughput attachment of sub-micron alignment of components are provided. One such device can include a fixture for holding a chuck, the fixture including a plurality of alignment features for adjusting a position of the chuck, the chuck includes a top layer including a vacuum aperture for holding a first component and a bottom layer made from a translucent material, wherein the bottom layer is directly attached to the top layer.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 27, 2018
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wachira Puttichaem, Sarawut Waiyawong
  • Patent number: 9881638
    Abstract: A method and system provides a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) transducer. The method and system include forming the disk of the NFT and forming the pin of the NFT. The disk is formed from a first material. The pin is formed from a second material different from the first material. The pin contacts the disk. At least a portion of the pin is between the disk and an air-bearing surface (ABS) location.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: January 30, 2018
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Kris Vossough, Xiaokai Zhang, Armen Kirakosian, Jinwen Wang, Tsung Yuan Chen, Yufeng Hu
  • Patent number: 9870788
    Abstract: A method is provided for manufacturing a magneto-resistive device, comprising the steps of: extracting at least one subset of bars from at least one bar section of a wafer; obtaining a magnetic performance of the at least one subset of the bars; determining an angle based on the magnetic performance; and processing remaining bars from the at least one bar section of the wafer based on the determined angle.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: January 16, 2018
    Assignee: Western Digital (Fremont), LLC
    Inventors: Leo Michael C. Miranda, Mark D. Moravec, Tang Hyok Lim, Reymon G. Ilaw
  • Patent number: 9858951
    Abstract: A method provides a read sensor stack including an antiferromagnetic (AFM) layer, a pinned layer on the AFM layer, a free layer, and a nonmagnetic layer between the free and pinned layers. Providing the AFM layer includes depositing an AFM layer first portion at a first elevated temperature and at a rate of at least 0.1 Angstrom/second. This AFM layer first portion is annealed in-situ at at least one hundred degrees Celsius. An AFM sublayer is deposited at an elevated temperature and at a sublayer deposition rate of less than 0.1 Angstrom/second. The already-deposited portion of the AFM layer is annealed in-situ at at least one hundred degrees Celsius and less than five hundred degrees Celsius. The sublayer depositing and annealing steps may be repeated in order at least once to provide an AFM layer second portion that has multiple sublayers and is thinner than the AFM layer first portion.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 2, 2018
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Yuankai Zheng, Qunwen Leng, Xin Jiang, Zhitao Diao, Christian Kaiser
  • Patent number: 9842615
    Abstract: A method and system provide a magnetic read apparatus. The magnetic read apparatus includes a read sensor. The read sensor includes a pinning layer, a nonmagnetic insertion layer and a pinned layer. The nonmagnetic insertion layer has a location selected from a first location and a second location. The first location is between the pinned layer and the pinning layer. The second location is within the pinning layer.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 12, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Joshua Jones, Christian Kaiser, Yuankai Zheng, Qunwen Leng
  • Patent number: 9830936
    Abstract: A tunnel magnetoresistance (TMR) read sensor having a tabbed AFM layer and an extended pinned layer and methods for making the same are provided. The TMR read sensor has an AFM layer recessed from the air bearing surface, providing a reduced shield-to-shield distance.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: November 28, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shaoping Li, Yuankai Zheng, Gerardo A. Bertero, Qunwen Leng, Michael L. Mallary, Rongfu Xiao, Ming Mao, Zhihong Zhang, Anup G. Roy, Chen Jung Chien, Zhitao Diao, Ling Wang
  • Patent number: 9812155
    Abstract: A method provides a magnetic read apparatus. A sensor stack is deposited. The read sensor is defined from the stack such that the sensor has sides forming a junction angle of 75 degrees-105 degrees from a sensor bottom. Defining the sensor includes performing a first ion mill at a first angle and a first energy and performing a second ion mill at a second angle greater than the first angle and at a second energy less than the first energy. The first angle is 5 degrees-30 degrees from normal to the top surface. After the first ion mill, less than half of the stack's bottom layer depth remains unmilled. Magnetic bias structure(s) adjacent to the sides may be formed. The magnetic bias structure(s) include a side shielding material having at least one of the saturation magnetization greater than 800 emu/cm3 and an exchange length less than five nanometers.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: November 7, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Anup Ghosh Roy, Guanxiong Li, Daniele Mauri, Ming Mao, Goncalo Albuquerque, Savas Gider
  • Patent number: 9805748
    Abstract: A method of providing an apparatus with a protective layer by simultaneously depositing carbon and seed material on the apparatus to form an intermediate layer, wherein the carbon and seed material have a percentage composition that varies as a function of the intermediate layer thickness; and then providing a diamond-like carbon (DLC) layer adjacent to the intermediate layer to produce the protective layer.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: October 31, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Yongping Gong, Budi Suswadi, Phuwanai Bunnak, Kah Choong Loo, Krisda Siangchaew
  • Patent number: 9799351
    Abstract: A magnetic apparatus has a media-facing surface (MFS), a pole, a top shield, a back gap and coil(s). The pole includes a yoke extension, a yoke between the yoke extension and the MFS, and a pole tip between the yoke and the MFS. The write gap is between the top shield and the pole tip. The back gap is recessed from the ABS and magnetically and physically connects the top shield to the yoke. The coil(s) energize the pole and have multiple turns. Part of a first turn is between the yoke and the top shield. Part of a second turn is recessed from the MFS and aligned with part of the yoke extension. Part of the first turn is between the part of the second turn and the MFS. The back gap is between part of the first turn and part of the second turn.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 24, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Feng Liu, Zhanjie Li
  • Patent number: 9786301
    Abstract: Apparatuses and methods for providing thin shields in a multiple sensor array are provided. One such apparatus is a magnetic read transducer including a first read sensor, a second read sensor, and a shield assembly positioned between the first read sensor and the second read sensor at an air bearing surface (ABS) of the magnetic read transducer, the shield assembly including a first shield layer assembly having a first footprint with a first area, and a second shield layer assembly having a second footprint with a second area, where the second area is greater than the first area.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: October 10, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shaoping Li, Gerardo A. Bertero, Steven C. Rudy, Shihai He, Ming Mao, Haiwen Xi, Srikanth Ganesan, Qunwen Leng, Ge Yi, Rongfu Xiao, Feng Liu, Lei Wang
  • Patent number: 9786305
    Abstract: A magnetic read apparatus includes a first sensor, a shield layer, an insulating layer, a shield structure and a second sensor. The shield layer is between the first sensor and the insulating layer. The shield structure is in the down track direction from the insulating layer. The shield structure includes a magnetic seed structure, a shield pinning structure and a shield reference structure. The magnetic seed structure adjoins the shield pinning structure. The shield pinning structure is between the shield reference structure and the magnetic seed structure. The second sensor includes a free layer and a nonmagnetic spacer layer between the shield reference structure and the free layer. The shield reference structure is between the shield pinning structure and the nonmagnetic spacer layer. The shield pinning structure includes a pinned magnetic moment. The shield reference structure includes another magnetic moment weakly coupled with the pinned magnetic moment.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: October 10, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shaoping Li, Shihai He, Gerardo A. Bertero, Ming Mao, Yuankai Zheng
  • Patent number: 9786304
    Abstract: A method for fabricating a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) write apparatus is described. The HAMR write apparatus is coupled with a laser for providing energy and has a media-facing surface (MFS) configured to reside in proximity to a media during use. The method includes providing a stack on an underlayer. The stack includes an endpoint detection layer, an optical layer and an etchable layer. The optical layer is between the etchable and endpoint detection layers. The etchable layer is patterned to form a mask. A portion of the optical layer is removed. A remaining portion of the optical layer has a bevel at a bevel angle from the MFS location. The bevel angle is nonzero and acute. The NFT is provided such that the NFT has an NFT front surface adjoining the bevel and at the bevel angle from the MFS location.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 10, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shawn M. Tanner, Mingjun Yu, Min Zheng, Kyung Lee, Tsung Yuan Chen
  • Patent number: 9779765
    Abstract: A magnetic writer includes a high magnetic moment write pole layer on a main write pole, the write pole layer including a proximal end recessed from the air bearing surface, and a Wide Area Track Erasure (WATER) reservoir recessed from the proximal end of the write pole layer and transverse to a longitudinal direction of the main write pole. The write pole layer may be conformal in shape to, but have smaller dimensions relative to, the main write pole, such that a distance between their outer surfaces is generally constant in a flare region. The WATER reservoir width, in a cross-track direction, may be greater than or equal to the maximum width of the main write pole.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: October 3, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Feng Liu, Zhanjie Li, Peng Luo, Zhigang Bai
  • Patent number: 9767831
    Abstract: A magnetic write apparatus has a media-facing surface (MFS), a pole, a write gap, a top shield and coil(s). The pole includes a yoke and a pole tip. The pole tip includes a bottom, a top wider than the bottom and first and second sides. The pole tip has a height between the top and the bottom. At least part of the top of the pole tip is convex in a cross-track direction between the first and second sides such that the height at the MFS is larger between the first and second sides than at the first and second sides. The height increases in a yoke direction perpendicular to the MFS. The write gap is adjacent to and conformal with the top of the pole at the MFS and is between part of the top shield and the pole. The top shield is concave at the MFS.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: September 19, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yu Pan, Yugang Wang, Zhigang Bai, Tao Lin, Peng Zhao
  • Patent number: 9754611
    Abstract: A magnetic write apparatus has a media-facing surface (MFS), a pole having leading and trailing surfaces, a trailing shield having a pole-facing surface, a write gap and coil(s). The pole's trailing surface has a portion adjoining the MFS and oriented at a nonzero, acute bevel angle from a direction perpendicular to the MFS. The pole-facing surface includes a first portion adjoining the MFS and oriented at a first angle substantially the same as the bevel angle, a second portion oriented at a second angle greater than the first trailing shield angle, and a third portion oriented at a third angle substantially the same as the first angle. The write gap has first, second and third thicknesses adjacent to the first, second and third portions of the pole-facing surface, respectively. The first thickness is constant. The second thickness varies. The third thickness is constant and greater than the first thickness.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: September 5, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Feng Liu, Zhanjie Li, Zhigang Bai, Yi Wang
  • Patent number: 9754613
    Abstract: A method and system provide a magnetic transducer having an air-bearing surface (ABS). The method includes providing a first shield, a first read sensor, an antiferromagnetically coupled (AFC) shield that includes an antiferromagnet, a second read sensor and a second shield. The read sensors are between the first and second shields. The AFC shield is between the read sensors. An optional anneal for the first shield is in a magnetic field at a first angle from the ABS. Anneals for the first and second read sensors are in magnetic fields in desired first and second read sensor bias directions. The AFC shield anneal is in a magnetic field at a third angle from the ABS. The second shield anneal is in a magnetic field at a fifth angle from the ABS. The fifth angle is selected based on a thickness and a desired AFC shield bias direction for the antiferromagnet.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: September 5, 2017
    Assignee: Western Digital (Fremont), LLC
    Inventors: Rongfu Xiao, Shihai He, Daniele Mauri, Ming Mao, Shaoping Li