Abstract: Blends of polyphenylene oxide-based polymers and lignin esters are described. These blends exhibit modulus of elasticity, tensile strength, and elongation at break values that are substantially the same as or greater than the modulus of elasticity, tensile strength, and elongation at break values for the polyphenylene oxide-based polymer alone. The blends provide compositions that have properties comparable to the polyphenylene oxide-based polymers, yet utilize less polymer.
Type:
Application
Filed:
June 5, 2009
Publication date:
December 9, 2010
Applicant:
Weyerhaeuser NR Company
Inventors:
David E. Fish, John A. Westland, Amar N. Neogi
Abstract: The disclosure relates to a computer-implemented method for stacking wood products. In some embodiments, the disclosure the steps of designing at least two types of engineered wood products via a software application; producing the at least two types of engineered wood products based on the designs utilizing a saw in conjunction with the software application; designating, via the software application, at least two bins to hold the at least two different types of engineered wood products; selecting a first bin for depositing a first type of engineered wood product; selecting a second bin for depositing a second type of engineered wood product; automatically placing the first type of engineered wood product into the first bin; and automatically placing the second type of engineered wood product into the second bin. The at least two types of engineered wood products are at least two of: panels, I-joists, headers and dimensional lumber.
Abstract: A cellulose pulp particle having the shape of a general prismatoid having two parallel bases, the pulp particle comprising pulp fibers in a wet laid pulp sheet form, one of the bases having an area that is equal to or greater than the area of the other base, the area of the larger base being equal to or less than 35 mm2 and equal to or greater than 8 mm2, the distance between the bases being equal to or greater than 0.9 mm and equal to or less than 5 mm, the particle being treated with a material. In some embodiments the material can be a hydrophilic, hydrophobic or softening chemical or a film.
Abstract: The present disclosure includes methods for enhancing hardness and dimensional stability of a wood element. In one embodiment, the method includes placing the wood element in a compression assembly set to a compression temperature between about 365° F. and about 410° F., heating and compressing the wood element without exceeding the species' threshold pressure value to produce a compressed wood product, heating the compressed wood product to a post-compression temperature between about 275° F. and about 350° F., and holding the compressed wood product at the post-compression temperature for about 30 to about 48 hours. The disclosure also includes a wood product having enhanced hardness.
Abstract: A method for making fibers having particles attached thereto, comprising blending a carboxyalkyl cellulose and a starch in water to provide an aqueous gel; treating the aqueous gel with a first crosslinking agent to provide a crosslinked gel; drying the crosslinked gel to provide a solid; comminuting the solid to provide a plurality of particles; combining at least a portion of the plurality of particles with a aqueous dispersion comprising cellulose fibers and a first water-miscible solvent and, optionally, a second crosslinking agent, to provide a mixture comprising swollen particles and cellulose fibers; and adding a second water-miscible solvent to the mixture to provide fibers having particles attached thereto.
Abstract: A method for dissolving cellulose in which the cellulose based raw material is admixed with a mixture of a dipolar aprotic intercrystalline swelling agent and an ionic liquid at a temperature of 25° C. to 180° C. for a time sufficient to dissolve the cellulose based raw material. The molar ratio of dipolar aprotic intercrystalline swelling agent to ionic liquid is 0.05 to 1.5 moles of dipolar aprotic intercrystalline swelling agent to 1 mole of ionic liquid. Dipolar aprotic intercrystalline swelling agents do not include imidazole based agents or amine based agents.
Abstract: Provided is a system for cutting and sorting of engineered wood products. Using appropriate software, a designer may model an entire house's structural frame. The dimensions and labeling for individual members of the structure are extracted from the model and captured by the software. The software may batch and optimize the products to be cut on the saw and develop sawing control instructions. The instructions are used by the saw to process the parts according to the house structure design. As the parts are processed by the saw, they are discharged and sent to an outfeed system that will stack the engineered wood products according to the parameters defined by the workstation operator. The system can handle the multiple lengths and widths of engineered wood parts from the saw and stack them in the order the software may specify.
Abstract: A method of preparing a material for use in a manufactured seed is provided. The method includes providing the material having a melting temperature. The method also includes subjecting the material to a heat treatment at a temperature about 10% below the melting temperature for a predetermined period of time.
Type:
Grant
Filed:
September 26, 2008
Date of Patent:
September 14, 2010
Assignee:
Weyerhaeuser NR Company
Inventors:
William C Carlson, Antony R. Shoaf, Randy L. Eatherton
Abstract: Particles comprising a combination of a carboxyalkyl cellulose and a galactomannan polymer or a glucomannan polymer, wherein the particles comprise a plurality of non-permanent metal crosslinks.
Type:
Grant
Filed:
October 2, 2006
Date of Patent:
August 31, 2010
Assignee:
Weyerhaeuser NR Company
Inventors:
S. Ananda Weerawarna, Mengkui Luo, Alena Michalek
Abstract: A composite wood product and methods for manufacturing the same and determining the concentration and distribution of an organic biocide within a composite wood product are provided. The organic biocide may be added to wood elements (i.e., fibers, flakes, strands, veneers) prior to consolidation and/or heating of the wood particles to form the composite wood product. A tracer additive may be mixed with the biocide, or applied separately to the furnish which is used to produce the composite wood product. The tracer additive may be detected via, for example, x-ray fluorescence. An amount of tracer additive detected may correlate to an amount of organic biocide within the wood elements and/or the composite wood product.
Type:
Grant
Filed:
November 14, 2008
Date of Patent:
August 31, 2010
Assignee:
Weyerhaeuser Company Limited
Inventors:
Marek J. Gnatowski, Christine L. Mah, Gareth Paul Merrick
Abstract: A fluid dispensing system includes a fluid dispensing pump interchangeably connected to a fluid dispensing pump manipulator that is capable of translating the fluid dispensing pump between two known positions along the Z-axis, and at least one open ended container, such as a seedcoat, disposed below the fluid dispensing pump for receiving fluid therefrom. The fluid dispensing system further includes a controller. The controller 30 sends control signals for automating the fluid dispensing process.
Abstract: In one aspect, the present invention provides methods of producing conifer cotyledonary somatic embryos from pre-cotyledonary embryos. The methods of this aspect of the invention include the step of (a) dispensing a plurality of pre-cotyledonary embryos onto a porous material horizontally disposed over a non-porous surface in a volume of sterile dilution medium sufficient to submerge at least the surface of the porous material, thereby uniformly dispersing the pre-cotyledonary embryos; (b) removing the sterile dilution medium from the non-absorbent porous material, thereby trapping the uniformly dispersed pre-cotyledonary embryos on the porous material; and (c) contacting the pre-cotyledonary embryos trapped on the porous material with development medium for a period of time sufficient to produce conifer cotyledonary somatic embryos.
Abstract: A mixed polymer fiber, comprising a crosslinked polymer fiber comprising carboxyalkyl cellulose and a galactomannan polymer or a glucomannan polymer, and cellulose fiber.
Abstract: The invention provides methods for producing pine somatic embryos using a liquid development medium and/or a liquid stratification medium. In a first aspect, the methods comprise the step of culturing embryogenic cells in, or on, a liquid development medium to produce cotyledonary pine somatic embryos. In another aspect, the methods comprise the step of culturing pine cotyledonary somatic embryos in, or on, a liquid stratification medium to produce stratified cotyledonary somatic embryos. The invention also provides methods for producing pine somatic embryos in bioreactors.
Type:
Grant
Filed:
June 24, 2004
Date of Patent:
June 8, 2010
Assignee:
Weyerhaeuser NR Company
Inventors:
Pramod K. Gupta, Diane G. Holmstrom, Bonnie Larson, Judith Zucati
Abstract: A method of managing timberland that utilizes multiple genetic crops. The method comprises planting within a plot of land a first genetic crop in a substantially linear pattern. This first genetic crop is selected for yielding trees with high lumber values. The first genetic crop is planted at a first crop spacing and at a first row spacing that is beneficial to yielding trees with high lumber value. Interplanted along the substantially linear pattern is a second genetic crop. The second genetic crop is selected for yielding trees for other than lumber value. The second genetic crop is planted at a second crop spacing that is shorter than the first crop spacing. Pruning the first genetic crop occurs at a time such that the final value of the first genetic crop will be maximized. Harvesting of the second genetic crop occurs at a time when either the final value of the first genetic crop will be maximized or the final value of the second genetic crop is high.
Abstract: The present invention is an adhesive suitable for use in the production of engineered wood products, said adhesive comprised of an aromatic diisocyanate (99.0-10.0 parts by mass) and an aromatic petroleum distillate (1.0-90.0 parts by mass) with low volatility. The adhesive composition may result in improved coverage or distribution on the outer surface of raw materials, such as strands, particles, flakes, fibers, or veneer.
Type:
Grant
Filed:
December 12, 2006
Date of Patent:
June 1, 2010
Assignee:
Weyerhaeuser NR Company
Inventors:
Jack G Winterowd, Erik M Parker, Cheng Zhang, Daniel V Hanson
Abstract: Systems for attaching a plurality of wood products are provided. In a first type of system, a first wood product has a first chemical compound applied to a surface of the first wood product. A second wood product has a second chemical compound applied to a surface of the second wood product. An adduct is formed when the first chemical compound contacts the second chemical compound wherein the first wood product becomes adhered to the second wood product. In a second type of system, a pressure sensitive and/or anaerobic adhesive is placed on at least one of the wood products prior to assembly. The compounds/adhesives have an open assembly time greater than or approximately equal to 24 hours.
Type:
Grant
Filed:
July 29, 2005
Date of Patent:
June 1, 2010
Assignee:
Weyerhaeuser NR Company
Inventors:
Jack G. Winterowd, Jerry D. Izan, Naomi High, Michael N. Taylor, Daniel V. Hanson, Amar N. Neogi, Thomas F. Schulner, Douglas R. Loates
Abstract: A method for making mixed polymer composite fibers containing cellulose fibers in which cellulose fibers are dispersed in an aqueous solution comprising a carboxyalkyl cellulose and a galactomannan polymer or a glucomannan polymer in water to provide an aqueous fiber dispersion; the aqueous dispersion treated with a first crosslinking agent to provide a gel; the gel mixed with a water-miscible solvent to provide composite fibers; and the composite fibers treated with a second crosslinking agent to provide crosslinked fibers.