Patents Assigned to William Marsh Rice University
  • Patent number: 10851393
    Abstract: The present disclosure describes a genetically engineered a KASIII-independent fatty acid biosynthetic pathway that makes use of the promiscuous nature of the rest of the FAS enzymes (3-ketoacyl-ACP synthetase, 3-ketoacyl-ACP reductase, 3-hydroxyacyl ACP dehydrase, enoyl-ACP reductase) to bypass the KASIII step by providing a Co-A precursor of two or higher than two carbons (such as the four carbon butyryl-CoA) as the starting molecule. Since many CoA-based starter molecules can be supplied for the fatty acid synthesis, much more diversified products can be obtained with various carbon-chain lengths. As such, this disclosure will serve as a powerful and efficient platform to produce low to medium chain length products carrying many different functional groups.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: December 1, 2020
    Assignee: William Marsh Rice University
    Inventors: Ka-Yiu San, Xian Zhang, Hui Wu, Dan Wang
  • Patent number: 10843134
    Abstract: In some embodiments, the present disclosure pertains to systems and methods for distilling a fluid by exposing the fluid to a porous membrane that includes a surface capable of generating heat. In some embodiments, the heat generated at the surface propagates the distilling of the fluid by converting the fluid to a vapor that flows through the porous membrane and condenses to a distillate. In some embodiments, the surface capable of generating heat is associated with a photo-thermal composition that generates the heat at the surface by converting light energy from a light source to thermal energy. In some embodiments, the photo-thermal composition includes, without limitation, noble metals, semiconducting materials, dielectric materials, carbon-based materials, composite materials, nanocomposite materials, nanoparticles, hydrophilic materials, polymers, fibers, meshes, fiber meshes, hydrogels, hydrogel meshes, nanomaterials, and combinations thereof.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 24, 2020
    Assignee: William Marsh Rice University
    Inventors: Qilin Li, Jinjian Wu, Nancy J. Halas, Katherine R. Zodrow, Haoli Guo, Jiarui Xu, Cong Yu
  • Patent number: 10846589
    Abstract: A mechanism for compiling a generative description of an inference task into a neural network. First, an arbitrary generative probabilistic model from the exponential family is specified (or received). The model characterizes a conditional probability distribution for measurement data given a set of latent variables. A factor graph is generated for the generative probabilistic model. Each factor node of the factor graph is expanded into a corresponding sequence of arithmetic operations, based on a specified inference task and a kind of message passing algorithm. The factor graph and the sequences of arithmetic operations specify the structure of a neural network for performance of the inference task. A learning algorithm is executed, to determine values of parameters of the neural network. The neural network is then ready for performing inference on operational measurements.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: November 24, 2020
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Ankit B. Patel, Richard G. Baraniuk
  • Patent number: 10844350
    Abstract: The present disclosure provides compositions and methods for producing hydrogel matrix constructs. Methods of using hydrogel matrix constructs for tissue repair and regeneration and for the oxygenation of red blood cells are also disclosed.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: November 24, 2020
    Assignee: William Marsh Rice University
    Inventors: Jordan Miller, Anderson Ta, Bagrat Grigoryan
  • Patent number: 10844365
    Abstract: Systems and methods generally useful in medicine, cellular biology, nanotechnology, and cell culturing are discussed. In particular, at least in some embodiments, systems and methods for magnetic guidance and patterning of cells and materials are discussed. Some specific applications of these systems and methods may include levitated culturing of cells away from a surface, making and manipulating patterns of levitated cells, and patterning culturing of cells on a surface. Specifically, a method of culturing cells is presented. The method may comprise providing a plurality of cells, providing a magnetic field, and levitating at least some of the plurality of cells in the magnetic field, wherein the plurality of cells comprise magnetic nanoparticles. The method may also comprise maintaining the levitation for a time sufficient to permit cell growth to form an assembly.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: November 24, 2020
    Assignees: William Marsh Rice University, The Board of Regents of the University of Texas System
    Inventors: Glauco R. Souza, Renata Pasqualini, Wadih Arap, Thomas Charles Killian, Robert M. Raphael, Daniel Joshua Stark
  • Publication number: 20200360406
    Abstract: The disclosure relates to the treatment of primary and metastatic cancer using radiation. Specifically, the disclosure relates to methods providing for the selective accretion of cytoprotective agent in tissues and/or organs, sensitive to radiation that are adjacent to malignant tumors prior to radiation of the tumors at a dose that otherwise would be toxic to the tissues and/or organs, but are necessary to achieve ablative outcome on the tumors.
    Type: Application
    Filed: November 19, 2018
    Publication date: November 19, 2020
    Applicants: WILLIAM MARSH RICE UNIVERSITY, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, BOARD OF REGENTS, UNIVERSITY OF TEXAS SYSTEM
    Inventors: James Tour, Cullen Taniguchi, Kathy Mason
  • Patent number: 10835614
    Abstract: The disclosure relates to a class of diol-based, unsaturated aliphatic polyesters that biodegrade into monomers capable of mitigating infection. These poly(diol fumarates) (PDFs) and poly(diol fumarate-co-succinates) (PDFSs), can be crosslinked to form networks of scaffolds with antimicrobial degradation products. Both the diol carbon length and the degree of available double bonds are tunable, resulting in a highly controllable class of antimicrobial polymers useful for cell scaffolds and drug delivery systems and devices.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 17, 2020
    Assignees: William Marsh Rice University, Board of Regents, The University of Texas System
    Inventors: Alexander Mitchell Tatara, Emma Watson, Antonios G. Mikos, Dimitrios P. Kontoyiannis
  • Patent number: 10833904
    Abstract: A client device includes a processor and an antenna. The client device obtains an announcement that specifies a winning client of a channel contention competition; identifies a group association of the client device using an identity of the winning client; transmits a preamble modulated by an entry of a preamble interference nullification matrix, the entry is based on the group association; and transmits, after transmitting the preamble, a data transmission. The preamble is transmitted at the same time as a second preamble is transmitted by a second client device.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 10, 2020
    Assignee: William Marsh Rice University
    Inventors: Adriana B. Flores Miranda, Edward W. Knightly
  • Publication number: 20200351454
    Abstract: A system for a wavefront imaging sensor with high resolution (WISH) comprises a spatial light modulator (SLM), a plurality of image sensors and a processor. The system further includes the SLM and a computational post-processing algorithm for recovering an incident wavefront with a high spatial resolution and a fine phase estimation. In addition, the image sensors work both in a visible electromagnetic (EM) spectrum and outside the visible EM spectrum.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Applicant: William Marsh Rice University
    Inventors: Yicheng Wu, Manoj Kumar Sharma, Ashok Veeraraghavan
  • Publication number: 20200349729
    Abstract: A method for a passive single-viewpoint 3D imaging system comprises capturing an image from a camera having one or more phase masks. The method further includes using a reconstruction algorithm, for estimation of a 3D or depth image.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 5, 2020
    Applicants: William Marsh Rice University, Carnegie Mellon University
    Inventors: Yicheng Wu, Vivek Boominathan, Hauijin Chen, Aswin C. Sankaranarayanan, Ashok Veeraraghavan
  • Patent number: 10811166
    Abstract: Embodiments of the present disclosure pertain to methods of making conductive films by associating an inorganic composition with an insulating substrate, and forming a porous inorganic layer from the inorganic composition on the insulating substrate. The inorganic layer may include a nanoporous metal layer, such as nickel fluoride. The methods of the present disclosure may also include a step of incorporating the conductive films into an electronic device. The methods of the present disclosure may also include a step of associating the conductive films with a solid electrolyte prior to its incorporation into an electronic device. The methods of the present disclosure may also include a step of separating the inorganic layer from the conductive film to form a freestanding inorganic layer. Further embodiments of the present disclosure pertain to the conductive films and freestanding inorganic layers.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: October 20, 2020
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Yang Yang, Gedeng Ruan
  • Patent number: 10808007
    Abstract: In one aspect, the present disclosure provides tubulysin analogs of the formula (I) wherein R1, R2, R3, R4, X1, X2, X3, and A1 are as defined herein. In another aspect, the present disclosure also provides methods of preparing the compounds disclosed herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of use of the compounds disclosed herein.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 20, 2020
    Assignee: William Marsh Rice University
    Inventors: Kyriacos C. Nicolaou, Dionisios Vourloumis, Jun Yin, Rohan Erande, Debashis Mandal, Phillipp Klahn
  • Publication number: 20200324292
    Abstract: The present disclosure provides methods, composition and devices for performing convection-based PCR and non-enzymatic amplification of nucleic acid sequences. Techniques and reagents employed in these methods include toehold probes, strand displacement reactions, Rayleigh-Benard convection, temperature gradients, multiplexed amplification, multiplexed detection, and DNA functionalization, in open and closed systems, for use in nucleic tests and assays.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 15, 2020
    Applicant: William Marsh Rice University
    Inventors: Dmitriy KHODAKOV, David ZHANG
  • Patent number: 10793840
    Abstract: Methods to create two component signal transduction systems by replace the DNA binding domains and output promoters in bacteria are described.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 6, 2020
    Assignee: William Marsh Rice University
    Inventors: Jeffrey J. Tabor, Sebastian Schmidl, Ravi Sheth, Felix Ekness, Brian Landry, Nikola Dyuglyarov
  • Patent number: 10774349
    Abstract: The present disclosure describes an engineered microorganism for producing alpha omega bifunctional C6-16 fatty acids from renewable carbon sources.
    Type: Grant
    Filed: May 7, 2016
    Date of Patent: September 15, 2020
    Assignee: William Marsh Rice University
    Inventors: Ka-Yiu San, Dan Wang
  • Patent number: 10777806
    Abstract: An energy storage device including a first electrode comprising lithium, a second electrode comprising a metal diboride, an electrolyte disposed between the first electrode and the second electrode and providing a conductive pathway for lithium ions to move to and from the first electrode and the second electrode, and a separator within the electrolyte and between the first electrode and the second electrode. A method of forming an energy storage device including forming a first electrode to include lithium, forming a second electrode to include a metal diboride, disposing an electrolyte between the first electrode and the second electrode, the electrolyte providing a conductive pathway for lithium ions to move to and from the first electrode and the second electrode, and disposing a separator within the electrolyte and between the first electrode and the second electrode.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 15, 2020
    Assignees: Baker Hughes, a GE company, LLC, William Marsh Rice University
    Inventors: Zhou Zhou, Keiko Kato, Ganguli Babu, Valery N. Khabashesku, Pulickel M. Ajayan
  • Patent number: 10766024
    Abstract: A multicomponent photocatalyst includes a reactive component optically, electronically, or thermally coupled to a plasmonic material. A method of performing a catalytic reaction includes loading a multicomponent photocatalyst including a reactive component optically, electronically, or thermally coupled to a plasmonic material into a reaction chamber, introducing molecular reactants into the reaction chamber, and illuminating the reaction chamber with a light source.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: September 8, 2020
    Assignee: William Marsh Rice University
    Inventors: Nancy Jean Halas, Peter Nordlander, Hossein Robatjazi, Dayne Francis Swearer, Chao Zhang, Hangqi Zhao, Linan Zhou
  • Patent number: 10753869
    Abstract: In one aspect, embodiments disclosed herein relate to a lens-free imaging system. The lens-free imaging system includes: an image sampler, a radiation source, a mask disposed between the image sampler and a scene, and an image sampler processor. The image sampler processor obtains signals from the image sampler that is exposed, through the mask, to radiation scattered by the scene which is illuminated by the radiation source. The image sampler processor then estimates an image of the scene based on the signals from the image sampler, processed using a transfer function that relates the signals and the scene.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 25, 2020
    Assignee: William Marsh Rice University
    Inventors: Ashok Veeraraghavan, Richard Baraniuk, Jacob Robinson, Vivek Boominathan, Jesse Adams, Benjamin Avants
  • Patent number: 10752925
    Abstract: Microbes and methods used to convert renewable carbon sources such as glucose, sucrose, biomass hydrolysate, methanol or formate, to succinate-derived products, such as fumarate or malate, which are desirable products having many uses.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 25, 2020
    Assignee: William Marsh Rice University
    Inventors: Ka-Yiu San, George N. Bennett, Irene Martinez
  • Publication number: 20200222453
    Abstract: Modified hydrophilic carbon clusters (HCCs), poly(ethylene glycol)-hydrophilic carbon clusters (PEG-HCCs) and similarly structured materials like graphene quantum dots (GQDs), PEGylated GQDs, small molecule antioxidants, and PEGylated small molecule antioxidants. These materials have been modified with an iron chelating moiety, deferoxamine, or a similar chelating moiety. By exploiting common binding sites, the carbon nanostructure facilitates intracellular transport including in mitochondria, reduces oxidative breakdown of the chelator moiety prior to treatment, and reduces both the cause and consequences of metal induced oxidative stress within the body thus providing a novel form of therapy for a range of oxidative and metal-related toxicities. Graphenic materials can be used for the treatment of acute and chronic mitochondrial electron transport chain dysfunction.
    Type: Application
    Filed: April 30, 2018
    Publication date: July 16, 2020
    Applicants: WILLIAM MARSH RICE UNIVERSITY, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, BAYLOR COLLEGE OF MEDICINE, HOUSTON METHODIST RESEARCH INSTITUTE, THE UNITED STATES GOVERNMENT
    Inventors: James M. TOUR, Lizanne NILEWSKI, William SIKKEMA, Kimberly MENDOZA, Thomas Andrew KENT, William DALMEIDA, Jr., Paul J. DERRY, Ah-Lim TSAI, Muralidhar L. HEGDE, Prakash DHARMALINGAM, Pavana Dixit HEGDE, Sankar MITRA, Joy MITRA