Patents Assigned to WIN Semiconductors Corp.
  • Patent number: 8964342
    Abstract: The present invention relates to compound semiconductor ESD protection devices using plural compound semiconductor E-FETs or compound semiconductor multi-gate E-FETs. The device comprises plural compound semiconductor E-FETs or multi-gate E-FETs, in which each of the gates is DC-connected to the source, drain, or an inter-gate region between two adjacent gates in the multi-gate E-FET through at least one first resistor, and at least one of the gates is AC-connected to the source, drain, or an inter-gate region between two adjacent gates in the multi-gate E-FET through a gate capacitor.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: February 24, 2015
    Assignee: WIN Semiconductors Corp.
    Inventors: Shinichiro Takatani, Jung-Tao Chung, Chi-Wei Wang, Cheng-Guan Yuan, Shih-Ming Joseph Liu
  • Patent number: 8911551
    Abstract: An electroless plating apparatus and method designed specifically for plating at least one semiconductor wafer are disclosed. The apparatus comprises a container, a wafer holder, an electrolyte supplying unit, and an ultrasonic-vibration unit. The container is provided with at least an inlet and used for containing electrolyte. The wafer holder is provided within the container. The electrolyte supplying unit is used to supply the electrolyte into the container via the inlet. The ultrasonic-vibration unit consisting of at least one frequency ultrasonic transducer is disposed in the container for producing a uniform flow of electrolyte in the container. Thereby, the wafers can be uniformly plated, especially for wafers with fine via-holes or trench structures.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 16, 2014
    Assignee: Win Semiconductor Corp.
    Inventors: Jason Chen, Nakano Liu, Winson Shao, Wen Chu, Chang-Hwang Hua
  • Publication number: 20140283991
    Abstract: A wafer edge protector is used in an inductively coupled plasma reactive ion etching instrument for the manufacturing of GaN semiconductor devices and circuits. The wafer edge protector comprises a ring clamp, which has a first inner diameter and a second inner diameter, and the ring clamp covers the edges of a wafer and a wafer carrier to clamp the wafer and the wafer carrier and to prevent damage on the edges of the wafer and the wafer carrier during the etching process.
    Type: Application
    Filed: March 20, 2013
    Publication date: September 25, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Chia-Hao CHEN, Yi-Feng WEI, Yao-Chung HSIEH, I Te CHO, Walter Tony WOHLMUTH
  • Publication number: 20140266280
    Abstract: A probe structure is disclosed which includes a metal needle, a soft insulative tube and a metal layer. The metal needle has a first end-portion and a second end-portion opposite to each other. The first end-portion has a tip. The soft insulative tube has a through hole in which the metal needle is partially inserted. The tip of the metal needle protrudes from the through hole. The metal layer is coated on the outer surface of the soft insulative tube and is electrically isolated from the metal needle; the thickness of the metal layer has a thickness no larger than 10 micrometers. Therefore, good resilience and signal integrity could coexist in the probe structure. A probe card including several above-mentioned probe structures and a method for manufacturing the above-mentioned probe structure are also disclosed.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Shu Jeng YEH, Min Chang TU, Jo Chang WU, Hui Mei OU, Cheng Ching HSU
  • Patent number: 8835283
    Abstract: A fabrication method for producing semiconductor chips with enhanced die strength comprises following steps: forming a semiconductor wafer with enhanced die strength by comprising the substrate, the active layer on the front side of the substrate and the backside metal layer on the backside of the substrate, wherein at least one integrated circuit forms in the active layer; forming a protection layer on a front side of the semiconductor wafer; dicing the semiconductor wafer by at least one laser dicing process and removing the laser dicing residues and removing said protection layer by at least one etching process, whereby plural semiconductor chips with enhanced die strength are produced, and wherein the backside metal layer of said semiconductor chip fully covers the backside of said semiconductor chip after dicing.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 16, 2014
    Assignee: WIN Semiconductors Corp.
    Inventor: Chang-Hwang Hua
  • Publication number: 20140252602
    Abstract: A structure of a semiconductor chip with substrate via holes and metal bumps and a fabrication method thereof. The structure comprises a substrate, at least one backside metal layer, at least one first metal layer, at least one electronic device, and at least one metal bump. The substrate has at least one substrate via hole penetrating through the substrate. The at least one first metal layer and electronic device are formed on the front side of the substrate. The at least one metal bump is formed on the at least one first metal layer. The at least one backside metal layer is formed on the backside of the substrate covering the inner surface of the substrate via hole and at least part of the backside of the substrate and connected to the first metal layer on the top of the substrate via hole.
    Type: Application
    Filed: August 16, 2013
    Publication date: September 11, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Chang-Hwang HUA, Chih-Hsien LIN
  • Publication number: 20140231875
    Abstract: An integrated circuit with ESD protection comprises at least one ESD protection circuit block, which comprises a DC blocking capacitor connected in parallel with at least one compound semiconductor enhancement mode FET as an ESD protection device. The ESD protection circuit block that is built in an integrated circuit provides ESD protection while minimizing the generation of unwanted nonlinear signals resulting from the ESD protection. An integrated circuit comprises a high frequency circuit, a switching element, and two ESD protection circuit blocks, in which the high frequency circuit is connected between a first terminal and a second terminal for inputting or outputting the RF signals, the first ESD protection circuit block is connected from a branch node between the first terminal and the high frequency circuit to the switching element, and the second ESD protection circuit block is connected from the switching element to the ground.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Shinichiro TAKATANI, Jung-Tao CHUNG, Chih-Wei WANG, Cheng-Guan YUAN, Shih-Ming Joseph LIU
  • Publication number: 20140231876
    Abstract: An improved pseudomorphic high electron mobility transistor (pHEMT) and heterojunction bipolar transistor (HBT) integrated epitaxial structure, in which the structure comprises a substrate, a pHEMT structure, an etching-stop spacer layer, and an HBT structure. The pHEMT structure comprises a buffer layer, a bottom barrier layer, a first channel spacer layer, a channel layer, a second channel spacer layer, a Schottky spacer layer, a Schottky donor layer, a Schottky barrier layer, an etching-stop layer, and at least one cap layer. By introducing the first channel spacer layer and the second channel spacer layer to reduce the density of the dislocations and to reduce the compressive strain in the pseudomorphic channel layer.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Shu-Hsiao TSAI, Cheng-Kuo LIN, Bing-Shan HONG, Shinichiro Takatani
  • Publication number: 20140209926
    Abstract: A compound semiconductor integrated circuit chip has a front and/or back surface metal layer used for electrical connection to an external circuit. The compound semiconductor integrated circuit chip (first chip) comprises a substrate, an electronic device layer, and a dielectric layer. A first metal layer is formed on the front side of the dielectric layer, and a third metal layer is formed on the back side of the substrate. The first and third metal layer are made essentially of Cu and used for the connection to other electronic circuits. A second chip may be mounted on the first chip with electrical connection made with the first or the third metal layer that extend over the electronic device in the first chip in the three-dimensional manner to make the electrical connection between the two chips having connection nodes away from each other.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Shinichiro TAKATANI, Hsien-Fu HSIAO, Cheng-Kuo LIN, Chang-Hwang HUA
  • Publication number: 20140183544
    Abstract: The present invention relates to compound semiconductor ESD protection devices of three types. The device comprises a multi-gate enhancement mode FET (E-FET). For the type I compound semiconductor ESD protection device, the source electrode is connected to the plural gate electrodes through at least one first resistor, and the drain electrode is connected to the plural gate electrodes through at least one second resistor. For the type II compound semiconductor ESD protection device, the plural gate electrodes are connected to at least one of the inter-gate regions between two adjacent gate electrodes through at least one fourth resistor. For the type III compound semiconductor ESD protection device, the plural gate electrodes are connected to the source or drain electrodes through at least one seventh resistor. Any two gate electrodes in the three types of compound semiconductor ESD protection devices can be connected by a resistor.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Shinichiro TAKATANI, Jung-Tao CHUNG, Chi-Wei WANG, Cheng-Guan YUAN, Shih-Ming Joseph LIU
  • Publication number: 20140183609
    Abstract: The present invention relates to compound semiconductor ESD protection devices using plural compound semiconductor E-FETs or compound semiconductor multi-gate E-FETs. The device comprises plural compound semiconductor E-FETs or multi-gate E-FETs, in which each of the gates is DC-connected to the source, drain, or an inter-gate region between two adjacent gates in the multi-gate E-FET through at least one first resister, and at least one of the gates is AC-connected to the source, drain, or an inter-gate region between two adjacent gates in the multi-gate E-FET through a gate capacitor.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Shinichiro TAKATANI, Jung-Tao CHUNG, Chi-Wei WANG, Cheng-Guan YUAN, Shih-Ming Joseph LIU
  • Patent number: 8749002
    Abstract: A structure and method for air cavity packaging, the structure comprises a carrier having plural die pads and leads, plural dies, plural wires, plural walls, and a lid. The dies are mounted on the die pads. The wires electrically connect the dies to the leads. The plural walls are disposed on the carrier and form plural cavities in a way that each cavity contains at least one die pad and plural leads, and each wall is provided with at least one air vent for exhausting air to the outside. The lid is attached on the plural walls via an adhesive agent to seal the plural air cavities, so that the plural connected air cavity packages are formed.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: June 10, 2014
    Assignee: Win Semiconductors Corp.
    Inventors: Zi-Hong Fu, Sung-Mao Yang, Chun-Ting Chu, Wen-Ching Hsu
  • Publication number: 20140120699
    Abstract: A fabrication method for dicing semiconductor wafers using laser cutting techniques, which can effectively prevent the devices on semiconductor die units from the phenomenon of etching undercut caused by the sequential steps after laser cutting, comprises following steps: covering the wafer surface with a protection layer; dicing the wafer by laser and separating the die units from each other; removing the laser cutting residues on the devices on the die units via wet etching by an acidic water solution; removing the protection layer by a non-acidic water solution and cleaning the devices on the die units. The selection of materials for the protection layer must consider the following factors: where (1) the materials for the protection layer must have relatively good properties for adhering and covering on the wafer; (2) the materials for the protection layer must be corrosion-resistant to the acidic water solution for etching residues.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 1, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Chang-Huang HUA, Ping Wei CHEN, Kevin HUANG, Benny HO, Chen-Che CHIN
  • Publication number: 20140103518
    Abstract: A structure and method for air cavity packaging, the structure comprises a carrier having plural die pads and leads, plural dies, plural wires, plural walls, and a lid. The dies are mounted on the die pads. The wires electrically connect the dies to the leads. The plural walls are disposed on the carrier and form plural cavities in a way that each cavity contains at least one die pad and plural leads, and each wall is provided with at least one air vent for exhausting air to the outside. The lid is attached on the plural walls via an adhesive agent to seal the plural air cavities, so that the plural connected air cavity packages are formed.
    Type: Application
    Filed: February 6, 2013
    Publication date: April 17, 2014
    Applicant: WIN Semiconductors Corp.
    Inventors: Zi-Hong FU, Sung-Mao YANG, Chun-Ting CHU, Wen-Ching HSU
  • Publication number: 20140097515
    Abstract: A compound semiconductor integrated circuit with three-dimensionally formed components, such as three-dimensionally formed bond pads or inductors, positioned above an electronic device. The dielectric layer inserted between the electronic device and the bond pads or inductors thereon has a thickness between 10 to 30 microns, so that it can effectively mitigate the effect of the structure on the device performance. A SiN protection layer can be disposed to cover the electronic devices to prevent contamination from the bond pad or inductor material to the electronic device, and therefore the lower cost copper can be used as the bond pad and inductor material. The three-dimensional bond pad can be used in wire bonding or bump bonding technology.
    Type: Application
    Filed: December 12, 2013
    Publication date: April 10, 2014
    Applicant: WIN Semiconductors Corp.
    Inventor: Shinichiro TAKATANI
  • Publication number: 20140054608
    Abstract: A compound semiconductor integrated circuit is provided, comprising a substrate, at least one compound semiconductor electronic device, a first metal layer, a protection layer, a plurality of second metal layers, and at least one dielectric layer. The first metal layer contains Au but does not contain Cu, and is at least partly electrically connected to the compound semiconductor electronic device. The protection layer covers the compound semiconductor electronic device and at least part of the first metal layer. Each of the plurality of second metal layers contains at least a Cu layer, and at least one of the plurality of second metal layers is partly electrically connected to the first metal layer described above. The at least one dielectric layer separates each pair of adjacent second metal layers. The second metal layers are used to form passive electronic components.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Shinichiro TAKATANI, Hsien-Fu HSIAO, Yu-Kai WU
  • Patent number: 8653562
    Abstract: An improved structure of the high electron mobility transistor (HEMT) and a fabrication method thereof are disclosed. The improved HEMT structure comprises a substrate, a channel layer, a spacing layer, a carrier supply layer, a Schottky layer, a first etch stop layer, a first n type doped layer formed by AlxGa1-xAs, and a second n type doped layer. The fabrication method comprises steps of: etching a gate, a drain, and a source recess by using a multiple selective etching process. Below the gate, the drain, and the source recess is the Schottky layer. A gate electrode is deposited in the gate recess to form Schottky contact. A drain electrode and a source electrode are deposited to form ohmic contacts in the drain recess and the source recess respectively, and on the second n type doped layer surrounding the drain recess and the source recess respectively.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: February 18, 2014
    Assignee: WIN Semiconductor Corp.
    Inventors: Cheng-Guan Yuan, Shih-Ming Joseph Liu
  • Publication number: 20130334564
    Abstract: A monolithic compound semiconductor structure is disclosed. The monolithic compound semiconductor structure comprises a substrate, an n-type FET epitaxial structure, an n-type etching-stop layer, a p-type insertion layer, and an npn HBT epitaxial structure, and it can be used to form an FET, an HBT, or a thyristor.
    Type: Application
    Filed: October 26, 2012
    Publication date: December 19, 2013
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Cheng-Kuo LIN, Szu-Ju LI, Rong-Hao SYU, Shu-Hsiao TSAI
  • Publication number: 20130334570
    Abstract: An integrated structure of compound semiconductor devices is disclosed. The integrated structure comprises from bottom to top a substrate, a first epitaxial layer, an etching-stop layer, a second epitaxial layer, a sub-collector layer, a collector layer, a base layer, and an emitter layer, in which the first epitaxial layer is a p-type doped layer, the second epitaxial layer is an n-type graded doping layer with a gradually increased or decreased doping concentration, and the sub-collector layer is an n-type doped layer. The integrated structure can be used to form an HBT, a varactor, or an MESFET.
    Type: Application
    Filed: October 26, 2012
    Publication date: December 19, 2013
    Applicant: WIN SEMICONDUCTORS CORP.
    Inventors: Cheng-Kuo LIN, Szu-Ju LI, Rong-Hao SYU, Shu-Hsiao TSAI
  • Publication number: 20130337634
    Abstract: A fabrication method for producing semiconductor chips with enhanced die strength comprises following steps: forming a semiconductor wafer with enhanced die strength by comprising the substrate, the active layer on the front side of the substrate and the backside metal layer on the backside of the substrate, wherein at least one integrated circuit forms in the active layer; forming a protection layer on a front side of the semiconductor wafer; dicing the semiconductor wafer by at least one laser dicing process and removing the laser dicing residues and removing said protection layer by at least one etching process, whereby plural semiconductor chips with enhanced die strength are produced, and wherein the backside metal layer of said semiconductor chip fully covers the backside of said semiconductor chip after dicing.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: WIN Semiconductors Corp.
    Inventor: Chang-Hwang HUA